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Image transformation techniques based on complex processing of the statistical

characteristics of multiband datasets can be used to reduce this redundancy and correlation

between bands.

�The new bands that result from this statistical procedure are called components. �

The process attempts to statistically maximize the amount of information (or variance)

from the original data into the least number of useful new components.

PCA transforms the axes of the multispectral space such that it coincides with the

directions of greatest correlation.

Each of these new axes is orthogonal to one another; that is, they are at right angles, and

the component images are arranged such that the greatest amount of variance (or

information) within the original dataset is contained within each component and the

amount of variance decreases with each component
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Transformation of original data on X1 and X2 axes onto PC1 and PC2 axes requires

transformation coefficients that can be applied in a linear fashion to original pixel values.

These new axes are called the first PC. �The second PC is perpendicular (orthogonal) to

PC1. Subsequent components contain decreasing amounts of the variance found in the

dataset.

(a) the cluster of BVs from two bands of an image, (b) a new coordinate system defined by

the X′, (c) the PCA transformation that occurs by rotating to the new axis, which is

orthogonal to the original X′ axis. The new axes are no longer the bands of the original

image, but derivative components from those data.
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By computing the correlation between each band and each PC, it is

possible to determine how each band loads or is associated with

each PC.

A linear combination of original BV and factor scores

(eigenvectors) produces the new BV for each pixel of every PC.

It is often the case that the majority of the information contained in

a multispectral dataset can be represented by the first three or four

PCA components.

Higher-order components may be associated with noise in the

original dataset.
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�The number of changes in BVs per unit distance for any particular part of the image is

called spatial frequency—that is, the roughness of the tonal variations occurring in an

image. Figure demonstrates the differences between low-frequency (less roughness) and

high-frequency (more roughness) images. In a low-frequency area, the changes in BVs are

subtle over the given area, while the opposite is true in a high-frequency image.

Local operations are performed (spatial filtering) to extract quantitative information, and the

BV of a given pixel is modified based on the values of neighbouring pixels.
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A filter (or a convolution mask/kernel) is a moving

window function that defines a small sub-window

with a dimension of 3 × 3 or larger and usually with

odd-numbered dimensions (e.g., 3 × 3, 5 × 5, and 7 ×

7). Pixel C2,2 in the window is the center pixel, and

odd-numbered window sizes ensure that there is

always a center pixel in the sub-window.

Filtering involves computing a weighted average of the pixels in the moving

window. The choice of weights determines how the filter affects the image. A

window of weight values is called a convolution kernel. Multiplying each pixel

in the moving window by its weight and summing all the products yield a new

value for the center pixel. The values used in a convolution kernel define whether

the filter is low pass or high pass.
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Low-pass filters are designed to emphasize low-frequency features and de-emphasize the

high-frequency components of an image. Thus, information changing very fast across a

landscape (e.g., in an urban area) will be subdued, while low-frequency information (e.g.,

grassland, water) is preserved. Low-pass filters are excellent for retaining low-frequency

information and are useful for removing noise (such as speckle) in an image.

Low-pass filters make similar cover areas appear uniform and can be useful for boundary

detection. Conversely, low-pass filters do not preserve edges, and larger window sizes lead

to greater smoothing.
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High-pass filters emphasize the detailed high-frequency components of an image and

deemphasize the more general low-frequency information. They enhance image details

(infrequent information) and are useful where lower-frequency information tends to hide

parts of the scene of interest, for example, roads in an urban scene. When building a high-

pass filter, the center pixel of the kernel is given more weight. Consequently, if it is an

edge, then the pixel will be greatly enhanced because edges have higher pixel values.
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Spatial filtering methods can also be used to remove noise in the data (e.g., striping or

speckles). De-striping of an image can also be done by running a low-pass and a high-

pass filter on an image and then adding the filter outputs.
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Another useful image-processing technique exploits the

relationships among the BVs of different bands of image features.

Mathematical expressions are applied to image bands in order to

extract thematic information. These expressions may be simple

ratio (SR) or complex equations and are generally developed to

target a specific feature of interest. Many such algorithms have been

developed to highlight characteristics of land cover, such as

vegetation, soil, water, and urban areas, and the information

extracted can be applied to a wide range of analyses.
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Band Ratio

�BVs of specific targets of interest vary from image to image depending on

environmental factors, including topography, the slope of the target surface, aspect ratio,

solar angle, seasonal changes, atmospheric conditions, water content, substrate

conditions, or shadowing.

This may make complex image analysis functions such as classification, feature

discrimination, and change detection difficult to perform. However, certain ratio

transformations applied to two or more spectral bands can minimize such effects.

In addition, these ratios may generate unique information not otherwise attainable,

through visual image analysis techniques.

where BR, Px is the output value for a pixel (Px) using the BVs of two bands: band x

(Bx) and band y (By). One obvious problem becomes clear that BR, Px = 0 is a possible

outcome. There are several methods to address this, however, including assigning a

value of 1 to any BV with a value of 0 or adding a small value to the denominator if it

equals zero (such as 0.1).
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Vegetation Index

Simple Ration, one of the first documented VIs that provides a simple formula for

measuring the ratio of red reflectance (ρred in% or dimensionless) to NIR reflectance (ρnir):

Green vegetation strongly reflects incident irradiation in the NIR region (40%–60%)

while absorbing up to 97% in the red region. As vegetation greenness declines, red

reflectance increases and NIR reflectance decreases. By computing the ratio of red to

NIR, this relationship can be quantified.

Normalized Difference Vegetation Index

NDVI is functionally equivalent to SR, and comparison plots reveal no scatter between

SR and NDVI.

NDVI is widely applied to spectral and image data for monitoring, analyzing, and

mapping VBVs.
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Vegetation Index

�There are several characteristics of NDVI that contribute to its utility and continuing

popularity among vegetation experts:

• Seasonal and phonological changes in vegetation can be monitored.

• Normalized data make comparisons more reliable.

• Ratioing reduces some cases of multiplicative noise caused by differences in solar angle,

shadows, and topographic variations.

Conversely, a major disadvantage to NDVI is the nonlinear nature of the relationship

between NDVI values and many VBVs. The index becomes saturated at high levels, and as

VBVs increase, NDVI shows little variation.

Enhanced Vegetation Index 1 and 2

Several VIs are tailored to specific sensors and may be tuned to maximize the results of

analysis at specific resolution characteristics. An example of this is the Enhanced

Vegetation Index (EVI) developed specifically for application to MODIS data. EVI is

similar to NDVI; however, it includes several coefficients in the equation to account for

atmospheric scattering and to reduce the saturation effects of NDVI at high values.
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Enhanced Vegetation Index 2 (EVI2), was developed for use with datasets that did not

have sensitivity in the blue region of the spectrum.

Wide Dynamic Range Vegetation Index

A simple adjustment to NDVI to compensate for the high-end saturation. Th�e Wide

Dynamic Range Vegetation Index (WDRVI) applies a weighted coefficient (a) to NDVI

with a value of 0.1–0.2 to linearize the index relationship to VBVs.

Three Band Model
Index that may be optimizable for other pigments and potentially other features of

interest. �Three-band model (TbM) requires the use of three spectral bands that must be

identified as follows:

• Band 1 (λ1): �The band that is most sensitive to changes in VBV.

• Band 2 (λ2): The band that is the most insensitive to changes in VBV.

• Band 3 (λ3): The band that accounts for backscattering/noise among samples.
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(a) Original aerial image, (b)

simple ratio, (c) Normalized

Difference Vegetation Index, (d)

Wide Dynamic Range

Vegetation Index
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(e) Enhanced Vegetation Index (f) three-band model
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