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PRINCIPAL COMPONENT ANALYSIS

Image transformation techniques based on complex processing of the statistical
characteristics of multiband datasets can be used to reduce this redundancy and correlation
between bands.

The new bands that result from this statistical procedure are called components. [
The process attempts to statistically maximize the amount of information (or variance)
from the original data into the least number of useful new components.

PCA transforms the axes of the multispectral space such that it coincides with the
directions of greatest correlation.

Each of these new axes is orthogonal to one another; that is, they are at right angles, and
the component images are arranged such that the greatest amount of variance (or
information) within the original dataset is contained within each component and the
amount of variance decreases with each component
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PRINCIPAL COMPONENT ANALYSIS

Transformation of original data on X1 and X2 axes onto PC1l and PC2 axes requires
transformation coefficients that can be applied in a linear fashion to original pixel values.
These new axes are called the first PC. The second PC is perpendicular (orthogonal) to
PC1. Subsequent components contain decreasing amounts of the variance found in the

dataset.

Principal components analysis

.Iz .Ig xz JI'_I C‘l

I Hz

Brightness values
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(a) Brightness values (b) Brightness values (c) Brightness values
(a) the cluster of BVs from two bands of an image, (b) a new coordinate system defined by
the X', (c) the PCA transformation that occurs by rotating to the new axis, which is
orthogonal to the original X' axis. The new axes are no longer the bands of the original
Image, but derivative components from those data.
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PRINCIPAL COMPONENT ANALYSIS

By computing the correlation between each band and each PC, it is
possible to determine how each band loads or is associated with
each PC.

A linear combination of original BV and factor scores
(eigenvectors) produces the new BV for each pixel of every PC.

It Is often the case that the majority of the information contained in
a multispectral dataset can be represented by the first three or four
PCA components.

Higher-order components may be associated with noise in the
original dataset.
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The number of changes in BVs per unit distance for any particular part of the image is
called spatial frequency—that is, the roughness of the tonal variations occurring in an
Image. Figure demonstrates the differences between low-frequency (less roughness) and
high-frequency (more roughness) images. In a low-frequency area, the changes in BVs are
subtle over the given area, while the opposite is true in a high-frequency image.

(a) (b)

Local operations are performed (spatial filtering) to extract quantitative information, and the
BV of a aiven pixel i1s modified based on the values of neiahbourina opixels.
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A filter (or a convolution mask/kernel) is a moving
window function that defines a small sub-window
with a dimension of 3 x 3 or larger and usually with
odd-numbered dimensions (e.g., 3 x 3,5 x 5, and 7 x
7). Pixel C2,2 in the window is the center pixel, and
odd-numbered window sizes ensure that there is Ca Ga Ca
always a center pixel in the sub-window.

Filtering involves computing a weighted average of the pixels in the moving
window. The choice of weights determines how the filter affects the image. A
window of weight values is called a convolution kernel. Multiplying each pixel
In the moving window by its weight and summing all the products yield a new
value for the center pixel. The values used in a convolution kernel define whether
the filter is low pass or high pass.
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(a) Original image
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Low-pass filters are designed to emphasize low-frequency features and de-emphasize the
high-frequency components of an image. Thus, information changing very fast across a
landscape (e.g., in an urban area) will be subdued, while low-frequency information (e.g.,
grassland, water) is preserved. Low-pass filters are excellent for retaining low-frequency
Information and are useful for removing noise (such as speckle) in an image.

Low-pass filters make similar cover areas appear uniform and can be useful for boundary
detection. Conversely, low-pass filters do not preserve edges, and larger window sizes lead
to greater smoothing.




SPATIAL FILTERING REMOTE SENSING

High-pass filters emphasize the detailed high-frequency components of an image and
deemphasize the more general low-frequency information. They enhance image details
(infrequent information) and are useful where lower-frequency information tends to hide
parts of the scene of interest, for example, roads in an urban scene. When building a high-
pass filter, the center pixel of the kernel is given more weight. Consequently, if it is an
edge, then the pixel will be greatly enhanced because edges have higher pixel values.
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Spatial filtering methods can also be used to remove noise in the data (e.g., striping or
speckles). De-striping of an image can also be done by running a low-pass and a high-
pass filter on an image and then adding the filter outputs.

Filtering Technique What It Does Filter Examples
High frequency Allows high-frequency information to pass through  Enhancing structural details
Suppresses low-frequency information Bring out boundaries and edges

Edges are sharp and small features stand out
Large features look suppressed
Low frequency Allows low-frequency information to pass through ~ Highlight larger features
Suppresses high-frequency information Bring out information in larger features
Edges pet subdued
Larger features are enhanced
Smaller features begin to get smoothed
Edge enhancement Detect edges/boundaries between features Aid in automated feature extraction
Useful for geologic information, urban areas, boundaries, etc.
Frequency domain Converts data from spatial to frequency domain Enhancement, compression
Noise removal, image restoration
Textural classification, quality assessment
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Another useful 1mage-processing technique exploits the
relationships among the BVs of different bands of image features.
Mathematical expressions are applied to image bands In order to
extract thematic information. These expressions may be simple
ratio (SR) or complex equations and are generally developed to
target a specific feature of interest. Many such algorithms have been
developed to highlight characteristics of land cover, such as
vegetation, soil, water, and urban areas, and the information
extracted can be applied to a wide range of analyses.



BAND RATIOING AND VEGETATION INDICES

REMOTE SENSING

Index Formula Source
: - SR = Pred - ,
Simple ratio ry Birth and McVey (1968)
Normalized Difference Vegetation Index NDVI= M Rouse et al. (1974)
(Pir + Pre)
Soil-adjusted Vegetation Index SAVI = (Pur —Prei) Huete (1988)
(Prir + Pred + )% (1+a)
Green Normalized Difference Vegetation Index GNDVI = % Buschmann and Nagel (1993)
rEr green

Green Atmospherically Resistant Vegetation Index

Enhanced Vegetation Index

Visible Atmospherically Resistant Index

Wide Dynamic Range Vegetation Index

Three-band Model

Enhanced Vegetation Index 2

P —| Pareen — (Pie = Pre )|

GARI=
Puir = | Pireee + ( Potue = Prea ) |

EVI=2.5x%- ( Prir — Pred )

(Pair + 6(Pred) — 7.5{Phiiee ) + 1)

lr_ljgrm _I:jrﬂi'_]]
(P green + Pred — Pl )

VARI =

A% ( Pair — Pred )
A% (P i + P red)

TbM—Lp(lﬂl_l —p(%s ]"jxn(h)

WDRVI =

EVI2 = 2.5% (P —Pri)
l:.pnlr+-2*4|:|:-]rm‘]+1.:l

Gitelson et al. (1996)

Huete et al. (1996)

Gitelson et al. (2002)

Gitelson (2004)

Gitelson et al. (2006)

Jiang et al. (2008)
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Band Ratio

BVs of specific targets of interest vary from image to image depending on
environmental factors, including topography, the slope of the target surface, aspect ratio,
solar angle, seasonal changes, atmospheric conditions, water content, substrate
conditions, or shadowing.

This may make complex image analysis functions such as classification, feature
discrimination, and change detection difficult to perform. However, certain ratio
transformations applied to two or more spectral bands can minimize such effects.

In addition, these ratios may generate unique information not otherwise attainable,
through visual image analysis techniques.

where BR, Px Is the output value for a pixel (Px) using the BVs of two bands: band X
(Bx) and band y (By). One obvious problem becomes clear that BR, Px = 0 is a possible
outcome. There are several methods to address this, however, including assigning a
value of 1 to any BV with a value of 0 or adding a small value to the denominator if it
equals zero (such as 0.1).
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Vegetation Index

Simple Ration, one of the first documented VIs that provides a simple formula for
measuring the ratio of red reflectance (p,.4 IN% or dimensionless) to NIR reflectance (p,;,):

SR = Pred

Prir
Green vegetation strongly reflects incident irradiation in the NIR region (40%-60%)
while absorbing up to 97% in the red region. As vegetation greenness declines, red

reflectance increases and NIR reflectance decreases. By computing the ratio of red to
NIR, this relationship can be quantified.

Normalized Difference Vegetation Index

NDVI is functionally equivalent to SR, and comparison plots reveal no scatter between
SR and NDVI.

NDVI = P ~Pred)
[Pnf: T p're:.'::'

NDVI is widely applied to spectral and image data for monitoring, analyzing, and
mapping VBVs.
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Vegetation Index

There are several characteristics of NDVI that contribute to its utility and continuing
popularity among vegetation experts:

» Seasonal and phonological changes in vegetation can be monitored.

» Normalized data make comparisons more reliable.

» Ratioing reduces some cases of multiplicative noise caused by differences in solar angle,
shadows, and topographic variations.

Conversely, a major disadvantage to NDVI is the nonlinear nature of the relationship
between NDVI values and many VBVSs. The index becomes saturated at high levels, and as
VBVs increase, NDVI shows little variation.

Enhanced Vegetation Index 1 and 2

Several Vs are tailored to specific sensors and may be tuned to maximize the results of
analysis at specific resolution characteristics. An example of this is the Enhanced
Vegetation Index (EVI) developed specifically for application to MODIS data. EVI is
similar to NDVI; however, it includes several coefficients in the equation to account for
atmospheric scattering and to reduce the saturation effects of NDVI at high values.

EVI=2.5x« {F'J-‘fr - F"m!]
{[} nir T 6“-}“”!} —7. S{P blue j + l:]
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Enhanced Vegetation Index 2 (EVI12), was developed for use with datasets that did not
have sensitivity in the blue region of the spectrum.

[pu.‘r - F"n:.f:]

EVI2=25x
{I-}.l.‘f.l' + 2-4{Prr.‘d]+ l:]

Wide Dynamic Range Vegetation Index

A simple adjustment to NDVI to compensate for the high-end saturation. Thél Wide
Dynamic Range Vegetation Index (WDRVI) applies a weighted coefficient (a) to NDVI
with a value of 0.1-0.2 to linearize the index relationship to VBVs.

WNDVIZ (P =)
i x I:’l_-"'.l + Pm!j
Three Band Model
Index that may be optimizable for other pigments and potentially other features of

interest. Three-band model (TbM) requires the use of three spectral bands that must be
identified as follows:

* Band 1 (A1): The band that is most sensitive to changes in VBV.
* Band 2 (A2): The band that is the most insensitive to changes in VBV.
» Band 3 (A3): The band that accounts for backscattering/noise among samples.

ToM= | p(h:) " —p(h2) [xp(2s)
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(a) Original aerial image, (b)
simple ratio, (c) Normalized
Difference Vegetation Index, (d)
Wide Dynamic Range
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€ (6)
Index value
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(e) Enhanced Vegetation Index (f) three-band model
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CLASSIFICATION

the measured brightness values
in the set of bands are used to
derive a label for the pixel

| |

4

mapping from  thematic map
data to labels

recorded wavebands




CLASSIFICATION CASES

At the individual pixel level, as before. [}

At the individual pixel level, but in the N ==
context of neighbouring pixels.

At the individual pixel level, but . s .
involving several different data types. i
optical radar

For the detection and labelling of

thermal

REMOTE SENSING

Pixel is labelled based on just its
spectral properties—i.e. the pixel vector.

Pixel is labelled based on its spectral
properties and the neighbouring labels.

Pixel is labelled taking

. ; » account of all available

data types.

o Objects such as buildings and

objects made up of sets of pixels. T —  vehicles are identified and labelled.
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CLASSIFICATION CASES

TRAINING

Sets of known pixels, with ground cover labels corresponding to those of interest to the analyst,
are used to train the specific classification algorithm being used.

CLASSIFICATION, LABELLING or GENERALISATION

The trained classifier is used to add the user-specified labels to all the unknown pixels in the scene.

TESTING

A set of labelled test pixels, usually different from those employed for training, is used to test
how well the classification has worked—in other words, what percentage of the test pixels is
correctly labelled?
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CLASSIFICATION

The maximum likelihood classifier

This was the mainstay classifier in remote sensing for many decades; it is easy to understand and its operation and results align well
with the spectral reflectance characteristics of the cover types of interest. It is a good classifier when the spectral dimensionality of
the data set is not high, but has limitations with hyperspectral data. We start with this technique since it provides background ideas
that are important for what is to follow.

The minimum distance classifier
This is a very simple approach to classification. We use it because it can be helpful in its own right but, more importantly, it provides
a good introduction to the final two techniques that we will treat.

The support vector machine

This is more complex mathematically. It has been widely used over the past two decades or so, largely because it can be used with
hyperspectral data sets.

The neural network and deep learning

The neural network has been used in remote sensing for about 30 years. Although it had limited success in its original form, recent
variations that lead to the convolutional neural network and deep learning have made it very popular, especially for complex problems.



CLASSIFICATION. SPECTRAL AND INFORMATIQRF"?'E SENSING
CLASSES

Most often the class labels we use in remote sensing are human constructs such as the ground cover classes of corn, wheat, sand,
clay, scrubland, pine forests, diseased crops, and so on.

But the best that the recorded remote sensing image data can tell us is whether there are naturally occurring groups of pixels, or
regions of the spectral space, that we hope in some way or other map well or approximately to the cover classes of interest to us.

Any identifiable groups of data in the spectral domain are called spectral classes or data classes.
The ground cover class labels we prescribe and search for in the data are called information classes.

The challenge in operational remote sensing is to gather information about the information classes in which we are interested
though a discovery of the spectral class structure of the data. We actually undertake a mapping:

recorded spectral data - spectral classes - information classes

There can be several spectral classes per information class. In simple exercises we assume that the information and spectral
classes are the same, which we will do for most of this module, unless otherwise indicated.
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CLASSIFICATION

Classification can be carried out on the basis of

S

e

e

T

The spectral properties of pixels alone (point classifiers)
The spectral properties of pixels and their neighbours
The spectral and equivalent properties of pixels represented by different data types

Groups of pixels defining objects

Practical classification involves three general steps: training, labelling unknown pixels and accuracy
testing.

When training using labelled data is involved the process is called supervised classification. When
there is no training the process is called unsupervised classification.

Although we define information class labels based on a particular practical exercise, classifier algorithms
actually work with classes within the data itself, called spectral classes. We have to discover the bridge
between the two.
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MAXIMUM LIKELIHOOD CLASSIFIER

To start us on the road to developing the maximum likelihood classifier, consider the simple two
dimensional spectral space shown below, based on bands which measure in the visible red and near
infrared parts of the spectrum. Using our knowledge of the reflectance characteristics of the cover
types of interest to us—in this example vegetation, soil and water—we can see where each pixel type

will be located in the space.

Xx,| Vvegetation pixels plot here © o1 Veaetation
; ® of E :
= = = o aeal
A O = 2
soil pixels plot here S A~
ko i
Hé //,/
B water pixels plot here \\-‘ ~ water
0505 08 10 12  Ls CNceus
X X
1 2

X,

In a real image, there will be variations in each of the three spectral reflectance curves, caused by
natural differences. The situation is more like on the next slide.. ..
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o

vegetation pixels

° o o A 2
o Q A A
A AA
soil pixels
= l. L H
. . m Water pixels

Variations in the spectral
reflectance curves lead to
groups of pixels, which tend
to cluster in regions of the

X, spectral space.

REMOTE SENSING

vegetation

soil
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MAXIMUM LIKELIHOOD CLASSIFIER

In the maximum likelihood classifier we assume that the clusters of pixels are densest towards
their centres, with the density dropping as we move away from the cluster centre. In general, that
is a reasonable assumption.

pixel density

a cluster of vegetation pixels

X1

We then make the assumption that the spread of pixels

X, within a cluster can be represented by a probability
distribution, most commonly a normal (or Gaussian)
distribution as shown here.
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MAXIMUM LIKELIHOOD CLASSIFIER

Having assumed that the pixels within a given class can be represented by a normal distribution, we
can use the properties of that distribution to help us develop a classifier algorithm. Recall that a
normal distribution is defined by its mean and variance (or standard deviation). In the case of a
multidimensional normal distribution the parameters are the mean vector and the covariance matrix.

mean vector m

covariance X
matrix C—» E

standard deviation=0

variance = ¢*

X

p(x)=2m) " o~  exp {=Y2(x—-m)*/a’}  2(x)=(2m)~"* |C|™** exp {—Y2(x—m)" C! (x—m)}
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MAXIMUM LIKELIHOOD CLASSIFIER

mean vector m.

covariance X
matrix C,.—>‘ ‘

X

1

We refer to a specific class - class 7 - by the symbol w,
We then write the equation for its probability distribution as

p(x|w,) = (2m)™2|C, | *Sexp {~¥%(x—m,)" C}(x—m )}

where the mean and covariance for that class

completely define the class distribution and, together, are
sometimes called the class signature

the distribution function for class w, m, C. are computed from the available training pixels for the class.
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MAXIMUM LIKELIHOOD CLASSIFIER

probability of pixels
belonging to each of

the classes

L

water

vegetation —~ X2

vegetation

soil

contours of
equal probability

l

segment the
spectral space
by class

Once we have estimated the signatures for each class
using the available training data, we could choose the
correct class for a pixel, with spectral vector X, by
comparing the class probabilities

p(X|vegetation)
. These are properly called
p(X|soil) i s
class conditional probabilities
p(X|water)

and choosing to allocate the pixel to the class with the
highest probability.

This is shown diagrammatically opposite, which also
demonstrates how contours of equal probability
effectively segment the spectral space into classes.

There is however a better approach ...
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MAXIMUM LIKELIHOOD CLASSIFIER

When we write the class distribution as below we are saying that the pixels of interest come from
class w,and that this expression gives us the probability (likelihood) of finding a pixel at position X
(i.e. with pixel vector X) from that class.

p(x|w)

It is a conditional probability in that it gives the likelihood of X occurring conditional on the class of
interest being w, .

What about this expression? p(w, | X)

It says that, given we are examining a pixel X, the probability that w, is the correct class for that pixel is
p(w, %)
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MAXIMUM LIKELIHOOD CLASSIFIER

If we knew the full set of p(w, | X) we could choose the correct class for a pixel by allocating it to the
@, corresponding to the largest p(wi | X). Stating this mathematically we say:

XEw, if p(w, | x)>p(w}. | X) for all j#i

where the symbol € means “belongs to” or “is a member of”.

This equation is called a decision rule because it allows us to decide the correct class for a previously

unseen pixel vector X if we know the set of p(w, | X). Those probabilities are called posterior
probabilities for reasons which will become clear soon.

The problem is that we do not know values for the posterior probabilities. We know the class distribution
functions p(w, ‘ X) through having estimated their mean vectors and covariance matrices from the
available training data, but we do not know the p(w ‘ X).
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MAXIMUM LIKELIHOOD CLASSIFIER

Fortunately, there is a very famous theorem in probability theory that allows us to handle the problem
of the unknown p(w, | X). Called Bayes’ Theorem, it says:

p(x| w)p(w)
p(X)

p(w,|x) =

Using Bayes’ Theorem in our decision rule we have, noting that the denominator p(X) appears on both
sides and can be removed, that

XEw, if p(X | w)p(w)>p(x | wj)p(wj) for all j#i

Thus, the decision rule is now stated in terms of the known (from training data) distributions functions
and a set of new probabilities of the form p(w,). What are they?
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MAXIMUM LIKELIHOOD CLASSIFIER

Effectively, p(wi) is the probability that the pixels from class w appear somewhere in the image. They are not
computed from anything but, instead, are a property of the scene itself. For example, if the scene being imaged
consisted of 35% of water pixels, 55% of soil pixels and 10% of vegetation pixels, then p(water) = 0.35,

p(soil) = 0.55, p(vegetation) = 0.1.

They are called prior probabilties because they are the probabilities (if we know them) with which we could guess
the class membership of a pixel prior to any analysis.

In contrast the p(w, | X) are called posterior probabilities because they are the probabilities with which we assess
the class membership of a pixel after we have carried out our analysis using the information provided by the
measurement vector X for the pixel.

In order to use our decision rule we need to find or estimate values for the prior probabilities. In remote sensing
that is usually done through some prior knowledge of the area being imaged. For example, if it was largely
vegetated then a high value of p(vegetation) would be chosen, and so on. If we had absolutely no way of
estimating the priors, then it is common to assume they are all equal, in which case our decision rule just reverts
to where we started - i.e. choosing the class for a pixel based just on the class distribution functions.
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MAXIMUM LIKELIHOOD CLASSIFIER

Recall that our decision rule for deciding the class membership of an unseen pixel vector is:

x€w, if p(x | 0)p(w,)>p(x| @ )p(w) for all j#i

in which the p(x | w,) are multivariate normal distributions. Thus, to apply the decision rule in that
form requires evaluating the normal distribution function each time we want to allocate a label to an
unknown pixel. We can generate a mathematically more convenient form if we take the natural
logarithms of both sides. That will not alter the decision.

We now define the discriminant function for the class W,
9, =In{p(x| w)p(w)} =Inpx|w) + np)
Noting p(x | w,) = (2m)™"*|C|™* exp {—%2(x—m )" C~'(x—m )} this becomes

9,(x) = —%NIn2n—%In|C |—%(x—m )" C~' (x—m ) + In p(w )
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MAXIMUM LIKELIHOOD CLASSIFIER

g.(X) = —%NIn2m—%lIn|C |- %(x-m)" C ! (x-m ) + In p(w))

The first term contains no discriminating information and can be removed, leaving as the discriminant
function for the Gaussian maximum likelihood rule

g, %) =Inp(w)—%In|C|-%%(x—m )" C~'(x—m)
and the decision rule is

XEw, if gi(x)>g}.(x) for all j#i
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MAXIMUM LIKELIHOOD CLASSIFIER

Image to be labelled or classified

1979 Landsat MSS segment of
256x276 pixels; four bands

Apparently four dominant
cover types:

* vyegetation
* burned vegetation (fire burn)

® urban
e water
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water vegetation

”

) [
'{\

9*‘“?

'3 ;? 4
5 ¢ . y.

b, 5% !,,‘
e~ AN f

fire burn urban

Select training pixels for each class

Choosing training data is simple in
this case for such broadly defined
classes.

Numbers of training pixels:

water 847
fire burn 1293
vegetation 2347
urban 781
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MAXIMUM LIKELIHOOD CLASSIFIER

mean covariance
vector matrix

Training involves estimating
the class signatures from the

4427 14.36 955 4.49 119

available training samples. 28.82 9.55 10.51 371 111
22.77 4.49 371 6.95 4.05

13.89 1.19 113 4.05 7.65

water vegetation 42.85 930 1051 12.30 11.00
% 35.02 10,51 20.29 22.10 20.62

35.96 1230 22.10 32,68 27.78

29.04 11.00 20.62 27.78 30.23

40.46 5.56 391 2.04 1.43

30.92 391 7.46 1.96 0.56

57.50 2.04 1.96 19.75 19.71

57.68 1.43 0.56 19.71 29.27

64.14 4358 46.42 7.99 -14.86

_ £ 1 60.44 46.42 60.57 17.38 -9.09
By Cowd 81.84 7.99 17.38 67.41 67.57
¥ 72.25 -14.86 -9.09 67.57 94.27

fire burn urban
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MAXIMUM LIKELIHOOD CLASSIFIER

Knowing the pixel size (0.4424ha) we can also estimate
the class areas:

* water 2,137h
* fire burn 6,274ha
* vegetation 12,765ha

urban 10,083ha

am We labelled (classified) 70,656 pixels by using a total of 5268
training pixels. Thus, by spending time (and often field work)
to find the correct labels in this case for only 7.5% of the pixels
we can then label the full image. This is a good return on the
time spent on training.
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MAXIMUM LIKELIHOOD CLASSIFIER

Note that the elements of the mean vectors (plotted below) are consistent with what we know
about the spectral reflectance curves of the cover types.

P

In this case the urban zone is
a mixture of bare surfaces and
vegetation

urban
vegetation o Loss of vegetation
though burning

L

water

green red IR1 IR2

*

Red absorption dip for green vegetation
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MAXIMUM LIKELIHOOD CLASSIFIER

First, how many training pixels per class are needed?

For an N dimensional spectral space the mean vector has N elements. The covariance matrix is
symmetric of size NXN; it has 2N (N+1) distinct elements that need to be estimated from the
training data. To avoid the matrix being singular, at least N(N+1) independent samples are needed.

Fortunately, each N dimensional vector contains N samples, one in each waveband; thus the
minimum number of independent training pixels required is (N+1) .

Because of the difficulty in assuring independence of the pixels, usually many more than this minimum
number are selected. A practical minimum of 10N training pixels per spectral class is recommended,
with as many as 100N per class if possible. That was the case for the example just considered.
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MAXIMUM LIKELIHOOD CLASSIFIER

For data with low dimensionality, say up to 10 bands, 10N to 100N can usually be achieved, but for
higher order data sets, such as those generated by hyperspectral sensors, finding enough training
pixels per class is often not practical, making reliable training of the traditional maximum likelihood
classifier difficult. A hyperspectral sensor with 220 bands for example, would seem to require between
2,000 and 20,000 pixels per training class for good training. Given that, in practice, substantial field
work and use of ancillary data sources might be needed to obtain acceptable training data, these
numbers are bordering on the impractical.

For data with high dimensionality, either methods have to found to reduce the number of bands to
use without sacrificing classifier performance, or other classifiers need to be found that do not suffer
the limitations of the maximum likelihood algorithm.
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MAXIMUM LIKELIHOOD CLASSIFIER

The problem of not having enough samples (pixels) to estimate classifier parameters reliably with increasing dimensionality of the
spectral space goes by several names. In remote sensing, it is called the Hughes phenomenon. In the general field of machine learning
it is called the Curse of Dimensionality, because increasing dimensionality does not always lead to better results, as might first be
thought.

accuracy degradation because the Hughes effect
offsets the benefit of additional features

— =

Based on results in K.S. Fu, D.A.
additional features Landgrebe and T.L. Phillips,
contribute to discrimination Information processing of remotely

sensed agricultural data, Proc. IEEE,

vol. 57, no. 4, April 1969, pp. 639-653.

This is disappointing. With improving technology, 10
offering more bands of data per image, one would
expect better results. But unless the numbers of

training pixels per class can also be increased, poorer
estimates of the covariance matrix can lead to a loss
of performance. This is seen in the simple example

classification accuracy %
~
o

opposite.
504 * 5 classes

« 400 training pixels per class

Although not as severe as with the maximum likelihood

} 3 1 3 1 1 1 1 J

17 2 3 4 5 6 7 8 9 1001
number of features

rule, other classifiers are also affected by the Hughes
phenomenon.
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MAXIMUM LIKELIHOOD CLASSIFIER

Now consider the shapes of the decision surfaces between classes.

Although not assured, the shapes of the decision surfaces do give us some prior qualitative assessment
of the power of a classification algorithm. Higher order surfaces can fit between classes with
complicated distributions better than surfaces of lower order.

For the maximum likelihood classifier the boundary — i.e. the decision surface — between the i** and j*
classes is the locus of points X for which the two discriminant functions are equal:

9,0 =g

so that

%(x-m)"' C~'(x—m, )—%(x—m, )" C'(x—m) + Inp(w) —Inp(w) —%In|C| + %In|C| =0
K "

> (i
this is the difference between two second order functions, which

itself will be second order (spheroidal, ellipsoidal, paraboloidal, etc.)
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MAXIMUM LIKELIHOOD CLASSIFIER

More complex decision surfaces can be generated if we use more than a single normal (Gaussian)
distribution for each class. For clarity, the distributions for the second class in the example below are
shown plotted negatively, but that does not affect the separating boundary. We will show how to use
this approach in Module 3.

class 1: single Gaussian class 1: three Gaussians—these could be spectral classes

005"

: §
[T w
€ R =
- @ 5
g 005 £
8 3
a o
0.1 dag

class 2: single Gaussian class 2: two Gaussians —these could be spectral classes
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SIMPLE CLASSIFIER

To start us on the road to developing other classification algorithms, consider the following
two-dimensional, two class spectral space. Although simple, it will enable us to develop all of the
important concepts for what is to follow.

X : i : -
2 | class 1 pixels 4 // For this example a straight line can be used to separate
the two classes.
g e
O / ¥ :
O ® o We could set up a simple decision rule which says that
2 O " pixels to the left of the line belong to class 1 whereas
0 @) those to the right belong to class 2.
@)
O O O .
class 2 pixels How can we express that mathematically?

X]
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SIMPLE CLASSIFIER

We start by setting up an equation for the line. As we know from simple geometry the line will have
an equation of the form x,= mx +cor x,—mx,—c = 0, where m is the slope and c¢ the axis intercept.

We can generalise the equation to:

%2 | class 1 pixels
B / w. x+w,x,+w,=0
O / o
= = / in which we refer to the w, as weights, or weighting
0 // ® o coefficients.
I/ O . . . .
e/ o - The above is for the simple case of two dimensions. In N
O ' . . .
/ O dimensions the line becomes a hyperlane and has the
O O :
( / o class 2 pixels equation

X, W, X +W, x,+.w, x+w, =0



REMOTE SENSING

SIMPLE CLASSIFIER

The equationw, x +w, x,+ ..w x,+w, =0 can be expressed in vector form:

wa+W~+1= Oorwx + Wy, = 0 where X is the pixel column vector and w is a column
vector of the weights. If you apply the rules of vector
algebra you will see that the top equation is generated

% | class 1 pixels by these two compact forms.
! @) If values for X to the left of the separating line are
- substituted into the expression
@ e
wx+w, .
O O | - :
the result will be positive. For the values of X to the right
O - ; - -
class 2 pixels of the separating line the result will be negative.

S| We thus have a decision rule. ..



DECISION RULE

class 1 pixels
m
O o // o
D “"/
D //" O O O
s/ %
O / O
n @
O O
/ 5 class 2 pixels
/
X1

REMOTE SENSING

Noting the symbol € means “belongs to,” we can write
our decision rule for deciding the correct class label
for a pixel, with vector X, in mathematical form as:

2 T
xEcIassllfwx+wN+1>O

2 T
xEcIasszlfwx+wN+1<0

This rule is particularly important and we will re-visit it
several times during this course.

To be able to use this rule we need to know the values
of w, i.e. the weights, or the coefficients in the equation
or the hyperlane (line in two dimensions).
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TRAINING A LINEAR CLASSIFIER

The data set we are dealing with is called “linearly separable” because a straight line (or hyperplane
in general) can be used to separate the classes. Often, this is quite restrictive, but we will see later
how to overcome that problem. Our objective now is to find a way of training the classifier—i.e.
finding the equation of the hyperplane through determining values for the weights.

X

class 1 pixels
=iy
O “ o
=
O O O
/] ©
B |/ O
(] O
/ ®
O /o O .
class 2 pixels

X1
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TRAINING A LINEAR CLASSIFIER

One of the earliest methods, going back to the 1960s, involves choosing an arbitrary initial separating
line, which we will now call a decision surface, and then iterating it into position by repeated reference
to each training pixel in turn. It is not used any more, but for anyone interested in this approach it

will be found in N.J. Nilsson, Learning Machines, McGraw-Hill, NY., 1965

class1pixels | / /

/ class 2 pixels

One of the problems with this approach is that a
large number of solutions is possible, as seen in
the diagram. We don’t know which is the optimal
solution. We will see later how to find that.

There are two other problems we must keep in
mind and which we will have to consider eventually.

First, real data is often not linearly separable.

Secondly, real data usually involves more than
two classes.



REMOTE SENSING

MINIMUM DISTANCE CLASSIFIER

Another simple approach to training is to choose as the decision surface the hyperplane which is the
perpendicular bisector of the line between the means of the training classes.

class 1 pixels
D }“,
O
O O O
i O
O I 10
0 m, O
O
O o O

class 2 pixels

X,

The easiest way to find the equation of the line is
to find the locus of the point X which is equidistant
from the two means

x“

d(x’ m,) 2 / .\
- \
e S \\ d(x, m)
mi B LN \\ J
o
m

we require d(x, m)) = d(x, m )
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MINIMUM DISTANCE CLASSIFIER

If the distances are to be equal, then so will be their squares, so that d(x, m)*= d(X, ml.)2

Now, from vector Euclidean geometry the
squared magnitudes of the distances are

d(x, m)’= (x—m)" (x—m,)

X/ d o i
X, m)=(x-—m)' (x—m.
d(x, mz) 3 /’\ ( ) ,) ( ,) ( ,)
R Y d(x,m) giving
i -~/ W
ey x'x — miTx - me.- e m‘.Tmi =X'x — ijx — mej+ m}.ij
m

so that, noting, y'z =z'y and (y"+2z") = (y+2)"
2(m—m)"'x+ (m'm-m™m) =0

which is the equation of the separating hyperplane (linear)
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MINIMUM DISTANCE CLASSIFIER

Although we have the equation for the linear decision surface, the decision rule applied in the minimum distance
classifier actually makes the class allocation for a pixel based on comparing its distance from each class. It is also
not just restricted to two classes. The diagram below shows the case for three, but it can be used for any number
required in a given exercise. The decision surface is still linear, but in a piecewise fashion.

%2 | class 1 pixels The usual decision rule for the minimum distance classifier is
. A\ Cclass 3 pixels
& = v A A a X € class [ if d(x, m)* < d(X, mj)2 for all j#1
O X ‘\ e ’A AA
-~ . ! :
. .- ’Q( Note that the square of the distance is used. There is no need
O - \\o ® \{)\ decision to compute actual distance, which involves a square root
Ol 0o Surface operation, since the smallest distance is also the smallest
7 O .
’ distance squared.
class 2 pixels

Xq
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MINIMUM DISTANCE CLASSIFIER

class 1 pixels _
. A Class 3 pixels
e A A
O ? E
O X ‘\ s /A A A
O o7~ A
i_‘ Y ﬁ ’<\ \\\ ~
O oo O "5 decision
Ul S 09 surface
I, O
/ O O
class 2 pixels
X

It is a linear classifier, in that the decision surfaces are
hyperplanes.

Training data is used to find the class means.
Unknown pixels are allocated to the class of the closest mean.

It is a multi-class classifier, not just binary.

It is simple and fast, both in training and classification.

Although not as potentially powerful as some of the later
algorithms we will consider, it should not be overlooked for
simple exercises, especially when used together with clustering,
as we will see later in the course
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MINIMUM DISTANCE CLASSIFIER

Steps to be followed in undertaking thematic mapping in remote sensing

Maximum likelihood classifier Minimum distance classifier

Gather labelled training data and labelled testing data.

Use training data to estimate statistics for class: Use training data to estimate statistics for class:
mi,C,. m,

Classifier is now trained and ready to use. Classifier is now trained and ready to use.

Apply the decision rule to each pixel in the image to Apply the decision rule to each pixel in the image to

obtain the most likely class label for that pixel based obtain the most likely class label for that pixel based

on class conditional or posterior probabilities. on the class means.

Produce a thematic map and a table of area estimates.

Use labelled testing data to evaluate the accuracy of the thematic map. If not acceptable, refine the classification by
examining which classes are most in error and seeing whether additional spectral classes (per information class) are
needed.
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Remember Occam’s Razor, but re-stated here

(with license!) as:

g don’t ncccssari/cj use

= ComP/icatcd c/(;ssi/'icr when a 5imple one

will do thc'/'ob/'ust as well

/n remote sensin

There will be occasions in remote sensing, particularly when
the number of bands is small, when classifiers as simple as
the minimum distance rule will do the job perfectly well.

Other simple methods are the nearest neighbour classifier,
the parallelepiped classifier, the table look-up classifier and
the spectral angle mapper; we will not consider them in this
course, but you should find them easy to understand.

William of Ockham 1285-1347
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The support vector classifier is based on the concept that the optimum decision surface is that which
lies mid-way between the two classes of pixel. In that objective it is not too different from the minimum
distance classifier that we looked at in the last lecture, except that the definition of “mid-way” is

chosen differently.

decision surface
class 1 pixels N i

s class 2 pixels

: t X
marginal hyperplanes

Instead of being located between the class means, the decision
surface, or separating hyperplane, is located mid-way between
the pixels from each class that are closest to the separating
hyperplane. Our objective is to find the location and orientation
of that hyperplane which actually maximises the separation
between the classes.

We start this search by drawing two “marginal” hyperplanes
that are parallel to the decision surface and pass through the
nearest pixels from each class, as shown on the figure opposite.
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The development of support vector classifier theory is a bit complicated. We will do it in four stages:

Stage 1 Finding the decision surface that Stage 2 Accounting for overlapping classes,
maximises the separation between the which is most likely to occur in practice.
marginal hyperplanes for a linearly

separable data set.

decision surface decision surface
X2 | class 1 pixels YR X2 | class 1 pixels
i |
. (;’ : .
m e @ = or (@]
. /’v’l / J .
m /) 0 o / ® o
B/ e m "o
& ' ® i ®
/@ O
i AR
it f class 2 pixels class 2 pixels

X, X
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Stage 3 Handling non-linearly
separable data sets.

class 1 pixels

decision surface class 2 pixels
X

REMOTE SENSING

Stage 4 Handling more than
two classes of pixels.

class 1 pixels

class 2 pixels
X
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THE SUPPORT VECTOR MACHINE: STEP 1,

REMOTE SENSING

L

MAXIMISING THE MARGIN FOR LINEAR SEPARABILITY

The equations for linear decision surfaces are given by the expression we derived in the first lecture of
. - e . . . ’I‘ —
this module: w x, + w,x, + ...w,x, + w, . = 0 which in vector formisw'x + w_ .= 0.

X | class 1 pixels

decision surface

/ /

class 2 pixels

T ) = -
WX +w,, |

X1

As with the minimum distance rule:

X € class 1 if WTX+WN+1>O

: T
xEcIassZIfwx+wN+l<O

The weights in these expressions are not unique. Provided
we keep their values in the same relative proportions we
can scale them up and down without affecting the equation

itself.

Importantly, we can scale the weights in such a manner that
the equations of the marginal hyperplanes are as shown on
the figure.
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THE SUPPORT VECTOR MACHINE: STEP 1,
MAXIMISING THE MARGIN FOR LINEAR SEPARABILITY

Our immediate objective now is to find the weights such that the gap between the marginal

hyperplanes is as large as possible.

decision surface
m v/
O Pk

class 1 pixels

D / /
D ‘\* ./"‘
Ly ‘*, fhl A

/ /
/’
/ / /
/ J
L7 AR
ey O
H oy S
f
/

/
/

'\ Q\ class 2 plxels

|

wx+u l wx+n -1

We call that gap the “margin”. On the next slide we see that
its value is

7
margin=“/||w||

where ||w|| is called the norm of the vector. It is the
Euclidean length, given as the square root of the sum of the
squares of the individual weights.

Strictly, the margin is defined as the distance of the closest
training sample to the decision surface, but the choice here
is also acceptable for what is to follow.
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THE SUPPORT VECTOR MACHINE
—CALCULATING THE MARGIN

The perpendicular distance from a point X to a plane, in general, is

X2 | class 1 pixels i , W'k, +w,_ |
i
3 e Iwl
O ; > O
] 2 j"i’ If X, = 0, the origin, and the plane is the right hand marginal
g ;"; @ @ hyperplane in the diagram, then the distance d1 is given by:
’ RO
[:/]f i O o Il 2 WN+1|
i 4 /775,. /
o & Iwli
D’/'\é 3 Likewise the distance d., is given by:
,, class 2 pixels ikewise the distance d, is given by:
\ / ) 1% WN+1|
e a, d, Iwl]

So that the marginis d,— d,= 2/}
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THE SUPPORT VECTOR MACHINE
—MAXIMISING THE MARGIN

O

O
O
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class 2 pixels

Xq

We want to maximise the margin ?/,w Which is equivalent to
minimizing the norm of the weight vector.

However, in seeking to minimise ||w|| we want to ensure that the
resulting marginal hyperplanes are, by definition, placed such that
the training pixels are on their correct sides, as depicted in the
diagram. This represents a constraint on the minimization of the
weight vector.

The way to handle that constrained minimisation is to use the
technique of Lagrange multipliers*. That entails setting up a
function called the Lagrangian £ which consists of what we
want to minimize, from which is subtracted a proportion of
each constraint. The proportions are the Lagrange multipliers.
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THE SUPPORT VECTOR MACHINE
—MAXIMISING THE MARGIN

We choose as the Lagrangian, the following expression. The half and square of the weight vector norm are chosen
for later convenience and don’t alter what we are doing.

IR
L=—|wl Za,.f,.

The @, 2> 0 are a set of Lagrange multipliers, and the fl. are conditions, one for each training pixel, that ensure the
pixels are on the correct side of their respective marginal hyperplane. What can we use for those conditions?

Consider a new set of binary variables y, one for each of the i*" training pixels.

Yy, has the value +1 for class 1 pixels and -1 for class 2 pixels.

> (A)

Now for all pixels X, in class 1 beyond the corresponding marginal hyperplane wal. +w,.. 21

So for those class 1 pixels y (Ww'x, +w, ) =1ory(w'x+w, )-1=0.

Exactly the same condition applies for class 2 pixels because the signs of y, and equation (A) both change.
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THE SUPPORT VECTOR MACHINE
—MAXIMISING THE MARGIN

Thus the equation for the Lagrangian from the previous slide now becomes

y—1718)

N+1

L= —; |lw]|*— Zai {y.(w'x. +w,_ ) — 1} where we have used f = y (WX + w
What we need to do now is minimise with L respect to the weights. While we are attempting to do that
the second term in the Lagrangian is trying to make L bigger for pixels that are on the wrong side of
their marginal hyperlane, because in that case the entry in the curly brackets {} will be negative; recall
the a, are by definition non-negative.

The mathematics now becomes a little tedious but leads to some remarkable and important results.
If you choose not to follow the detail, we will still summarise the important results at the end.
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THE SUPPORT VECTOR MACHINE
—MAXIMISING THE MARGIN

L= % |lw|]>— Zai {y(w'x +w,_ )— 1} where we haveused f =y (WX +w, )—1 (B)
To minimise £ with respect to the weights we equate its partial derivative to zero, in the usual way.

Noting that ||w||* = w'w we find.

g—fv =W —Zai y, X, = 0 so that w =Zai VX, (C)

Thus we know the weights if we know the «..

This means that we can set up the equation of the decision surface from the (full) set of training pixels,
knowing also which class each pixel belongs to — the y .. In a sense, this is what happens with all classifier
training methods: the training pixels are used to find the decision surface. But this will soon become

simpler.



SUPPORT VECTOR MACHINE REMOTE SENSING

THE SUPPORT VECTOR MACHINE
—MAXIMISING THE MARGIN

Minimising £ with respect w, ,, we find

dL
awN-H

= — Zai y, = 0 But we don’t yet know the value of w, .. That will come later. (D)
i

We can now use (C) and (D) to simplify the original Lagrangian expression at (B).
First, using (C) we note that

Substituting this into the Lagrangian formula, and using (D) we find we can express L in the

so-called dual form 1
— — T
L—Zai : Zai ayy X' X (E)
i ij

By minimizing the Lagrangian with respect to the weights we now have it expressed in terms of the Lagrange
multipliers. Remember their role is to try to make L big, so we can now seek to maximise (E) with respect to

the a,.
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THE SUPPORT VECTOR MACHINE
—MAXIMISING THE MARGIN

o 1
L—Zai—E;aiajyiijiji (E)

Maximising this expression yields values for the «.. In practice, that is a complicated procedure so it
is usually carried out numerically.

There is now an important additional constraint we haven’t yet met. It comes from the application of the
Lagrange multiplier technique, and is one of the so-called Karush-Kuhn-Tucker (KKT) conditions:

a{y(wx+w, )—1}=0

This is an amazing constraint. It says that either a, is zero or the term in the {} brackets is zero. The latter is

only true for pixels lying on one of the marginal hyperplanes, in which case &, is non-zero. The &, corresponding
to all other training pixels is zero, so those pixels become unimportant in the training process.

The pixels lying on the marginal hyperplanes are now called support vectors, because they are the only ones
needed to support training.
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THE SUPPORT VECTOR MACHINE
—MAXIMISING THE MARGIN

i 1
L—Zai— E,Z,-:ai ayy XX, (E)

Assume we have now solved (E) under these circumstances. That gives us the remaining unknowns in the
expression for the weight vector we derived earlier: w = Z,- @y, X, so we can now completely specify the vector
and thus the decision surface (although we still need a value for w, ). Because of the KKT condition of the

previous slide we can write this expression for the weight vector in terms of just those pixels lying on the
marginal hyperplanes. In a sense, that is quite logical because it is those pixels which define the margin!

Thus w = Zai y, X, where S is the set of support vectors, which is much smaller than the original set of
i€s training pixels vectors.

Thus only a small subset of the training pixels is required to find the decision surface.

Apart from w, . we have now trained the support vector classifier. In the next lecture we will look at how
it is used.
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THE SUPPORT VECTOR MACHINE
—THE CLASSIFICATION STEP

From the previous lecture we have the weight vector for the decision surface defined just in terms of
the support vectors—i.e. just those training patterns that lie on the marginal hyperplanes.

w=Yex
IES

Recall our decision rule is

xEcIasslifwa+wN+l>0 XEclass1lif z> 0
or

xEcIassZifwa+wN+l<O X Eclass2if z<0

Using the above form for w z=sgn{iw'x+w, }= sgn[ Zai y, XX + W’V“}

IES
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THE SUPPORT VECTOR MACHINE
—THE CLASSIFICATION STEP

Thus decisions about the class membership of the unknown pixel X are made based on the set
support vectors.

z=sgn{w'x+w, .} = sgn{ Zai ¥, X Xk WNH} (F)

IES

Now what about the value for w,  .? The simplest approach is to choose a support vector from each

class — call them X(1) and Xx(-1) respectively — and substitute them into their respective marginal
hyperplane equations, so that we have

(wx(-1)+w,,)-1=0
(w'x(1) + w,, )+1=0

givingw, = —% w'[x(—1) + x(1)] A variation on this averages over groups of support vector pairs

We now have all the parameters in (F) specified, so that we can now label unknown pixels.
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THE SUPPORT VECTOR MACHINE
—THREE OTHER STAGES

There are three practical limitations in the material presented so far that have to be overcome before
the support vector classifier can be used in remote sensing.

It assumes the two classes are completely separable

It is a linear classifier.

|
® |t is binary, in that it only separates two classes of data

We now turn our attention to overcoming those limitations.
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THE SUPPORT VECTOR MACHINE
—OVERLAPPING CLASSES

It is unrealistic to think that the two classes of data, in practice, will be completely separate as in our previous diagrams.
Instead, the situation will be more like that below, in which there will be some pixel vectors on the wrong side of the
decision surface. In this illustration we have only shown one such pixel but, in practice there could be several. We have
also shown a pixel close to the decision surface; the reason for that will become clear soon.

class 2 pixel on the wrong

side of the decision surface The support vector approach developed so far cannot handle the situations
shown in the diagram and requires modification. That is done by relaxing
ciees 2 el close the requirement of finding a maximum margin solution.
to the decision
surface

Instead, we agree that such a goal is not possible for all training pixels and
accept that some will be in error during training.

) We therefore, introduce some “slackness” into training.
margin 2/|jwj| ' class 2
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THE SUPPORT VECTOR MACHINE
—OVERLAPPING CLASSES

To handle this situation we introduce a set of positive “slack variables” {i, one for each training pixel, which
we use to modify the original decision rule.

Thus, instead of requiring
y(wx+w, )=1

Wi =g for a pixel to be on its right side of the decision surface and
E=0 thus correctly classified, we modify the rule to

y(wx+tw,,)=21-¢

margin */iwi / ol What values does fl. take, and how do they affect the rule?
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THE SUPPORT VECTOR MACHINE
—OVERLAPPING CLASSES

y,(W'x +w, )=1-—¢& Whatvalues does ¢, take?

& = (0 for training pixels that are on, or on the correct side of,
L
the marginal hyperplane — our usual decision rule

§ =1 forapixel on the separating hyperplane — the decision
surface — because W'X. + w, .= Oand |y | = 1.

£=0 & > 1 for pixels that are on the wrong side of the separating

hyperplane since W'X + w, . has the opposite sign
to y, for misclassified pixels.

@
margin 2/jwi ' class 2 §=ly,—(W'x +w, )| <1 forall other training pixels.

N+1
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THE SUPPORT VECTOR MACHINE
—OVERLAPPING CLASSES

From the previous slide we note that fl. is zero for correctly located training pixels, whereas it is positive for those which
are either in the wrong class or in the region between the marginal hyperplanes and the decision surface. Therefore their
sum will be an indication of the total error incurred by the poorly located training pixes — in terms of where the
boundaries have been placed.

What we want to do now is maximise the margin, as before, but also minimise the error caused by those poorly located
pixels. We now have a decision to make. Do we want to give maximising the margin priority over minimising the training
error caused by placing the decision surface so that some pixels are in error, or do we want to minimise the latter?

What we, in fact, do is set up a measure that allows us to strike a compromise between two objectives. Remember that
maximising the margin is the same as minimising the norm of the weight vector ||w||. The following measure provides
the compromise; the parameter C (called the regularization parameter) is a user-chosen weight that allows us to trade
off minimizing the weight vector norm with the total error caused be poorly located training pixels.

1
Z Wi+ €8,
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THE SUPPORT VECTOR MACHINE
—OVERLAPPING CLASSES

1
Slwll+c) ¢,
We need to minimise this term subject to the constraints:

Eslicey (wx +tw, )=21—-§ory (Wx+w, )—1+& 20

N+1

we want to ensure that the argument y. (WTX.- +w,,,) — 1+ & remains positive.

N+1

2. We must also ensure that all the &, remains positive.

Thus the Lagrangian to be minimised is

L= 2 |\l +CX ¢ - Y a {y, Wk +w,, ) —1+&}— X &

2
w _J
Y
this is to be minimised T T

one set of Lagrange multipliers another set of Lagrange multipliers
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THE SUPPORT VECTOR MACHINE
—OVERLAPPING CLASSES

We will not proceed with the theory any further at this stage, because it parallels what we did with the case where there
were no overlapping classes; there are, however, more constraints to take into account here because of the additional
Lagrange multipliers*. Once the Lagrangian has been optimised, including a numerical solution to find the Lagrange
multipliers, the following results are obtained:

Again a, = 0 for many of the training pixels, meaning they will not contribute in the classification
step (i.e. the step of labelling unknown pixels). Only those training pixels for which &, # 0 take part
— again they are the support vectors.

The decision rule turns out to be the same as before (the x. drop out in the optimisation)

gLz~ 0 z=sgn{w'x+w, }= sgn{ Za{ Y, X X+ w\_l}
X Eclass2if z< 0 ' i€s ’

Note that the user has to find a value for C beforehand; that will influence the values of the Lagrange multipliers
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THE SUPPORT VECTOR MACHINE
=1HE CLASSIFICATION STEP.

Consider our decision rule again, in which the two classes are defined by the sign being positive or
negative:
z=sgn{w'x+w, }= sgn{ Zai y XX + W~+1}

ES

We note that the central operation is a scalar or dot product of the form w'x or xiTx

We now assume we can transform the set of pixel vectors so that they become linearly separable. We
will see an example shortly, but for now just represent the transformation as ¢b(x) so that the scalar
products above take the form:

d(x)" p(x) = k(x, x)

This is called a kernel function.
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THE SUPPORT VECTOR MACHINE
—USE OF KERNELS

Using the kernel function in the decision rule we have
z=sgn{k(wx) +w, }= sgn{ Za‘. y k(x,x) + WN+1]
IES
The interesting thing about this expression is that we don’t need to know the function ¢ provided we
can choose an appropriate kernel k.

What functions can be used as kernels? Any that is decomposable (in principle) into a scalar product
is suitable. We will not go into that detail, but the kernels shown on the next slide are commonly used.
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THE SUPPORT VECTOR MACHINE
—USE OF KERNELS

Common kernels

square of the scalar product  k(X, X) = (X,"X)? of limited value

polynomial  k(x,Xx) = (x'x + b)™
Gaussian radial basis function  k(x, X) = exp{—v||x—x,||*} the most popular

sigmoidal  k(x,X) = tanh(kx'x + b)

Note that the last three kernals have parameters (b, m, y, k) values for which need to be determined.



SUPPORT VECTOR MACHINE REMOTE SENSING

THE SUPPORT VECTOR MACHINE
—USE OF KERNELS

We now consider a very simple example of how kernels work, using a basic quadratic function.

k(y, x) = (y'x)*

y X
So we can see what happens, restrict the data space to two dimensions, thus y = [yl] and X = [ xl]
2 2

Therefore k(y,X) = (y'X)*=[x, y,+ x, y,]’=x}yi+2x vy, x,y,+ x> y?

A
yl xl yl

which can be written as k(y,x) = [x? V2x,x, xZ] V2yy,| = |V2xx,| (V2yy,
2 2 2
y2 | L x2 L y2

scalar product

Thus (y"x)? can be expressed as a scalar product and is an acceptable kernel.
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THE SUPPORT VECTOR MACHINE
—USE OF KERNELS

«T p
2 2
4y Y1

Since k(y, x) = (y'x)? = V. 2x.x, V. 2y.¥,| we can see that the associated transformation is
2 i L 2

Xy
P(x) = | V2x,x,

2
xZ

It is a three dimensional space defined in terms of the squares and cross products of the original dimensions.

2
Zl xl

Z

Call the new coordinates | Z,

= \/2x1x2 and apply this to a simple example...

2
3 | x2
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THE SUPPORT VECTOR MACHINE
—USE OF KERNELS

VA x2
1 1
Applying this transformation | z, | = \/lexz to the data set below yields the results shown
2
z, X2
X 4
60 O 3200
s : ) ®
Original data is not s0 @4l | @ ] The transformed data
E=t D
. L Bc O @] N () . .
linearly separable. The &0 P B o (S is linearly separable.
8 : O QO B3 0O .
classes lie either side \. | S The classes now lie
30 7 B 1600 | O
of the quadrant of a ” i Sl ml °@ either side of a straight
circle. i o0 [—1—M line.
7 ‘ B @
LjD X %Q z
10 20 30 40 50 60 : 800 1600 2400 3200 1

Although a third dimension has been created by the transformation, the second z, axis is not used in
this example. Linear separability has been achieved in a two-dimensional sub-space.
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THE SUPPORT VECTOR MACHINE
— HANDLING MULTIPLE CLASSES

We now come to the final step in using the support vector machine — turning the binary classifier into one that
will handle many classes. Several approaches have been adopted. The simplest is the decision tree:

unknown pixel vector

binary classifier

| x

not class 1

binary classifier

not class 2

binary classifier

not class 3

P
class 1

>
class 2

v

>
class 3

Each SVM classifier is trained to separate one class from the rest,
sequentially.

A problem is that the training sets are unbalanced, in that there are
many fewer pixels representative of the class being separated than
in the aggregated set of all the remaining training pixels.

Also, we don’t know the optimal order in which to separate each class.
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THE SUPPORT VECTOR MACHINE
— HANDLING MULTIPLE CLASSES

REMOTE SENSING

An approach often used in practice is the one-against-the-rest or one-against-all (OAA) strategy.

binary classifier

X

unknown —p
pixel
vector

binary classifier

decision
rule

class

Each classifier is, again, trained to separate one class
form the rest, not sequentially as before, but in
parallel.

There is one classifier for each of the M classes of
pixel.

For an unknown pixel a decision is taken over all the
classifier outputs to find the most favoured label. That
can be done by choosing the class (classifier) which is
associated with the largest value of

s @, Y, XX + w, ., which is the argument of the
binary classifier decision rule we saw previously with
the SVM.
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THE SUPPORT VECTOR MACHINE
— HANDLING MULTIPLE CLASSES

REMOTE SENSING

Yet another approach is the one-against-one (OAOQ) strategy, which uses the same parallel arrangement.

binary classifier

X

unknown —p
pixel
vector

binary classifier

decision
rule

class

A set of classifiers is trained, in which each classifier is
designed to separate just two classes. For M classes
there will, therefore, be M(M-1)/2 separate classifiers.

Each class will appear explicitly M-1 times among the
binary classifiers, but all classifiers will respond to all
unknown pixels.

An unknown pixel is placed into the class which has the
greatest number of recommendations in favour of it
among the M(M-1)/2 decisions.

This works well but training can take a long time
because of the need to develop M(M-1)/2 classifiers;
this will be a large number even for a practical number
of classes.
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We now have all the tools in place for using the SVM.

®* We know how a maximum margin decision rule can be developed on linearly separable data.

®* We know how to extend that to the case where there are overlapping classes.

® We have seen how kernels can be used to allow data which is not linearly separable to be handled.

® We have seen that there are methods to undertake multi-category classification based on
networks of binary (SVM) classifiers.
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Before we apply the SVM to a real problem there are several initial steps we have to take:

® We need to choose which kernel function to use — the Gaussian radial basis function is most
common.

®* We have to choose values for any parameters in the kernel, in this case y.

® We have to find a value for the regularisation parameter C.

The last two steps are important because the values chosen for those parameters have to be optimal
in terms of reducing classification error — i.e. achieving best performance.

® And, we have to choose our multi-class strategy — OAO is often used.

These steps are now arranged in the sequence followed in practice, using our previous tabular form. ..
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Steps to be followed in undertaking thematic mapping in remote sensing

Support vector classifier
Choose the kernel and multiclass strategy to use.

Gather labelled training data and labelled testing data.
Use training data and grid search procedures to find the kernel and regularization parameters, and the support vectors.

Apply the decision rule based on the support vectors to each pixel in the image to obtain the most likely class label for
that pixel.

Produce a thematic map and a table of area estimates.
Use labelled testing data to evaluate the accuracy of the thematic map. If not acceptable refine the classification by

examining which classes are most in error and seeing whether additional spectral classes are needed or whether the
parameter estimates need refining.
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Finally, we need access to SVM software.

* |tis possible to write your own software, based on material presented in these
lectures. There are, however, a number of public domain and commercial routines

available.

* One of the most popular is LibSVM available from the National Taiwan University.
See https://www.csie.ntu.edu.tw/~cjlin/libsvm/

e Matlab also includes an SVM toolbox, as does ENVI.
See https://www.harrisgeospatial.com/docs/SupportVectorMachine.html
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The image is a segment of a Quickbird 2 image taken over the city of Boumerdes in Algeria,
located on the coast of the Mediterranean sea. It was acquired on 22 April 2002 and

consists of 500x600 pixels, with spatial resolution of 0.6m, achieved through pan-sharpening
the 2.4m multispectral bands. The Quickbird 2 sensor has four bands:

blue 450-520nm green 520-600nm red 630-690nm NIR 760-890nm
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There are several cover types in the image, the most notable being:

water
sand
tree .
traffic streets—called asphalt 1
asphalt
pavements—called asphalt 2
rock
tiles—called roof 1
roof
. cement—called roof 2
bare soil

These are the classes in which Two of them have two sub-classes each. We call these

we are interested. We call spectral classes. Often, to get good class separation
them information classes. we may have to use several spectral classes per
information class.
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We now need to choose labelled pixels for training and testing. The maps below show those used in this exercise.

B water
sand
tree
asphalt 1
asphalt 2
- o W . rock

roof 1
roof 2
- : bare soil

training pixels testing pixels
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Some important data:

REMOTE SENSING

number of samples

training

Bl water 600
M sand 600
 tree 375
B asphalt1l 105
B asphalt 2 343
rock 175

B roofl 75
B roof 2 294
bare soil 300
2867

testing
2400
2400
700
200
500
450
200
500
700
8050
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The next step is to design the classifier.

We have to choose (1) the kernel function to use, and then determine the “optimal” value of its parameters
(2) the multiclass strategy to use

(3) the value of the regularization parameter C.

This exercise was carried out using the Gaussian radial basis function kernel k(x, X) = exp{—y/|[x—x||*}
which has just a single parameter y.

We show how a value can be found for this on the next slide, in conjuction with finding a value C.

The one against one (OAO) multiclass strategy was used, resulting in 36 separate classifiers, since there are
9 spectral classes.
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Parameter determination is usually carried out by grid searching. Ranges of values of C and y are searched to find
the combination which minimizes the training error (shown here in blue shading).

¥
In this exercise, based on the experience of the authors,
the following slightly simpler procedure was adopted:
y was chosen initially as 0.25.
C was then varied from 25 to 200 in steps of 25.
¢
Using the best value of Cfrom the previous step, y was
Trying to find the = v ‘ then varied from 0.25 to 2 in steps of 0.25.
grid intersection =
Although not as comprehensive as a full grid search, this
closest to the
<8 simpler approach nevertheless finds values for the
minimum error.

parameters that work well enough in this case.

Note that the same parameter values were used for all 36 binary classifiers. They were C = 200 and y = 2.
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The results 6192 out of the 8050 testing pixels were correctly classified, representing an
overall accuracy of 76.9%. The table below shows the performance by class.

B water 100%
B sand 65.7%
tree 95.6%

B asphaltl 63.5%
B asphalt 2 85.4%

rock 44.0%
B roofl 62.5%
roof 2 72.0%
bare soil 44.1%

Accuracy was assessed by a process called 2-fold cross validation, which we
will treat when considering classification accuracy in detail in module 3 of
the course.
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The results Note classification errors

Some pixels of rock have
been classified as tree

Many pixels of bare soil
have been classified as
asphalt

thematic map

We need more sophisticated error measures in cases like this.
Again, we will meet them in Module 3.
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The previous simple example does not demonstrate one of the key benefits of the support vector machine — the ability
to handle image data of high dimensionality, such as hyperspectral imagery.

Consider now an exercise involving 200 spectral bands. This is drawn from F. Melgani and L. Bruzonne, Classification of
hyperspectral images with support vector machines, IEEE Transactions on Geoscience and Remote Sensing, vol. 42, No. 2
August 2004, pp. 1778-1790.

The data set, called Indian Pines", was recorded by AVIRIS (Airborne Visible and Infrared Sensor) in 1992. AVIRIS records
224 bands over the spectral range 0.4-2.5um. At the time of this experiment it recorded 220 bands with a 10 bit
radiometric resolution.

* Baumgardner, M. F, Biehl, L. L., Landgrebe, D. A. (2015). 220 Band AVIRIS Hyperspectral Image Data Set: June 12, 1992
Indian Pine Test Site 3. Purdue University Research Repository. doi:10.4231/R7RXS991C
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The Indian
Pines Data
Set:

20 bands discarded because of
atmospheric problems with the data

red — channel 50
green — channel 27
blue — channel 17

[Classes )
background
Alfalfa
@8 Corn-notill
@ Corn-mn
m Corn
@ Grass/Pasture
@B Gross/Trees
0 Grass/pasture-mowed
# Hay-windrowed
# Oats
@8 Soybeans-not1ll
@ Soybeans-mn
@8 Soybean-clean
M Wheat
@8 Woods

Bldg-Grass-Tree-Drives

Stone-steel towers

REMOTE SENSING

ﬂli'.. .‘
'Fllllll

-
I"I

7 of 16 classes discarded because not
enough training samples are available
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Experiment design

One against all (OAA) multiclass strategy

Gaussian radial basis function kernel

Through searching, chose C = 40 and y = 0.25

REMOTE SENSING

corn-no till

corn min-till
grass/pasture
grass/trees
hay-windrowed
soybean-no till
soybean-min till
soybean-clean till
woods

number of samples

training
742
442
260
389
236
487
1245
305
651
4757

testing
692
392
237
358
253
481
1223
309
643
4588
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Results

corn-no till 91.5%
corn min-till 87.9%
grass/pasture 94.9%
grass/trees 98.9%
hay-windrowed 100.0%
soybean-no till 88.6%
soybean-min till 91.3%
soybean-clean till 95.8%
woods 99.4%

overall accuracy 93.4%

This is a remarkably good result, especially
with data of such high dimensionality.

Sensitivity to values of C and ¥

To check the importance of having precise values for the regulation and kernel
parameters, the authors carried out the following sensitivity tests, in which
one was held constant while the other was varied over the range shown. They
then computed the average performance over the tests, as shown below. The
fact that the variance is small, indicates that the parameters do not have to
be determined with high preccision in these ranges in order still to get good
results. Note though that the original (grid) searching operation is still needed
to get the nominal values for Cand .

mean variance in

FOROE accuracy accuracy
C=1-100 y=-1 92.6% 0.84%
C=40 y=0.1-3 92.5% 0.50%
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Sometimes labelled training data is unavailable, and yet we might still wish to undertake some form of
thematic mapping. We can do that using the process called clustering, which can produce a map of
unspecified labels.

As the name implies clustering looks for groups of similar pixels. Similarity is usually assessed on the basis
of the spectral properties of pixels, so the groups we search for are clusters in spectral space.

We can often identify the pixel labels produced by clustering through the use of spatial clues in the image
itself, and by using the cluster means as surrogates for spectral reflectance information. Also, forms of
reference data like maps and air photos give us hints as to what the cluster classes in the thematic map
might represent.
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UNSUPERVISED CLASSIFICATION
THROUGH CLUSTERING

labels such as ground cover
‘ ] A, B, Cetc labels

N\

B >
clustering cluster map a posteriori use thematic map
= algorithm of reference data
’’’’ and spatial clues
recorded : : . .
wavebands Rather than use (unavailable) labelled data beforehand to train a supervised algorithm

such as the CNN, SVM or MLC classifiers, here we use reference data afterwards in an
effort to add meaningful ground cover labels to the labels found by clustering. Once a
clustering algorithm has placed a pixel into a particular cluster it can be labelled that
way on a cluster map. We need to turn that cluster map into a thematic map
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CLUSTERING: SIMILARITY METRICS

Clustering algorithms place pixels into groups (or clusters) based on their similarity. The most
common measure of similarity is based on spectral measurements. Two pixels with very similar
measurement vectors are likely to belong to the same class and thus cluster.

In order to quantify similarity in spectral space we need a similarity measure. The most common
metrics are based on measuring the spectral distances between pixels.

One logical distance metric is the Euclidean distance between pixels, defined by:
d(x,, X,) = [[x,— x|
= (%= %)"(x,~ X))}/

N 1/2
— {Z(x“*_ x2n)2} N is the number of bands

n=1
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CLUSTERING: SIMILARITY METRICS

Another common similarity metric is the city-block distance, defined by:

N
d(x, X,) =Z|x1n_ Xon
n=1

This is just the accumulated difference along each spectral dimension, similar to walking
between two locations in a city laid out on a rectangular grid.

There are other distance metrics too, but they are used less frequently than the ones presented
here. Furthermore, some clustering algorithms measure similarity not just in terms of spectral
distance but also taking into account spatial proximity, similar to our observation of spatial
context in previous lectures.
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CLUSTERING: NON-UNIQUENESS

Using the concept of spectral similarity it should be possible to group pixels in a data set. However,
a unique grouping of pixels may not always be possible, as seen in the following diagram. Also, how
do we know which one is the better clustering?

X, | one possible cluster assignment
[
/ \/ \ .
/—\\ /J”’—v\:\‘
[} /"\ ‘\ L ,‘/ - o
iy N R Two possible clusterings of
/ S : ; :
o Mo en/ eight pixel vectors in a two

dimensional spectral space

another possible cluster assignment
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CLUSTERING: NON-UNIQUENESS

Clearly, we need some way of evaluating whether one cluster assignment is better than another. To do that
we need a “quality of clustering” criterion, a common one of which is the sum of squared error measure

(SSE).

This checks how far away all the pixels in a given cluster are from the cluster centroid—i.e. the mean—and
then sums those distances within the cluster. It does so for all clusters and sums the results.

A good cluster assignment is one that leads to compact clusters and thus to a small SSE.

SSE = ZZ“" m||2—ZZ(x m)’(x — m)

xeC [. xEC

In which m_is the mean vector of the i cluster C, and X€C, is a pixel to that cluster.
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CLUSTERING: FINDING AN
ACCEPTABLE ALGORITHM

In principle we should be able to develop a clustering algorithm that minimizes the SSE for a given data set.
But that turns out to be impractical since it would require an enormous number of candidate clusterings of
the available data to find that with the smallest SSE. Instead, some heuristic methods have been developed
that work well, two of which we will develop here.

The k means (or migrating means) algorithm

The k means approach to clustering requires the user to specify beforehand how many clusters to search
for, and to specify a set of initial cluster mean vectors. The image pixels are then assigned to the cluster of
the closet mean, after which the set of means is re-computed. The pixels are then assigned to the nearest
of the new set of means, and so on until the means and assignments do not change. Algorithmically this
can be expressed as on the next slide. In the next lecture we will see how the algorithm works.
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CLUSTERING: THE k MEANS
(OR MIGRATING MEANS) ALGORITHM

Select a value for C, the number of clusters into which the pixels are to be grouped.
Initialise cluster generation by selecting C points in spectral space to serve as candidate cluster centres.
m.c=1..C

(

Assign each pixel vector X to the candidate cluster of the nearest mean using an appropriate distance
metric. That generates a cluster of pixel vectors about each candidate mean.

Compute a new set of cluster means from the groups formed in Step 3.

mc=1..C

If m,=m, for all ¢ then the procedure is complete. Otherwise put m,=m_and return to step 3.
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OPERATION OF THE k MEANS
CLUSTERING ALGORITHM

We now demonstrate the k means algorithm using the two dimensional data set shown here.

8 —
6
4 — °
- @
2 o
A
0 2

Two decisions have to made before using the algorithm. The first is the
number of clusters to be found and the second is where to place the
cluster centres initially.

Examining this data set it seems there are two or possibly three clusters.
In practice that might not be obvious, so a guideline is needed. Because
we can merge clusters later, it is good to estimate on the high side,
recognizing however that the more clusters there are the longer the
algorithm is likely to take to converge. A guideline in remote sensing is to
estimate the number of information (ground cover) classes in a scene
and then search for 2 to 3 times that number of clusters.
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OPERATION OF THE k MEANS
CLUSTERING ALGORITHM

There are several ways to set the initial positions of the clusters:

They can be spaced uniformly along the multi-dimensional diagonal of

o the spectral space. That is a line from the origin to the point of
: I * maximum brightness on each axis.
= L J
2 e A refinement of that guideline is to choose the multi-dimensional
4 [~ 2 diagonal that joins the actual spectral extremities of the data.
— [ J L J
2 o Another approach is to space the initial cluster centres uniformly along
— the first principal component of the data.
T T S S [
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OPERATION OF THE k MEANS
CLUSTERING ALGORITHM

— domain B

[ location of pixels in the spectral

~ SSE=77 ’

=
\O initial mean vectors
o e T

J

2 4 6

8

The bottom row shows the operation of the k means
algorithm and the evolution of the clusters. Note that there
is a progressive reduction in SSE. The diagram to the right
shows the migration of the means, by iteration.

We are looking for two clusters.

The method also goes by the name of iterative optimization.

8  second assignment 8 I~ third assignment

— SSE=20 . — SSE=19 B
6 - . i o |

- §—e ) -~ O—e
& o | = » o

- ‘ » ° ' = Oe .
2 |- -O mean vectors computed 2 - ¢

.- from initial assignment |

e T o (CSSERT F O Y BT e

0 2 4 6 8 0 2 4 6 8

REMOTE SENSING

— migration of the cluster
— means to their final positions

[~ fourth and final assignment

— SSE=16 .
— .\\ V’

= o
- « o o

B _OO e
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THE ISODATA ALGORITHM

The Isodata algorithm builds on the k means approach by introducing a number of checks on the clusters found
either at the end of or at intervals during the process. These checks, and subsequent actions, include:

® Seeing whether any clusters contain so few points as to be meaningless
If the statistics of clusters are important, say for use in a later maximum likelihood classification, then poor
estimates will be obtained if the clusters do not contain a sufficient number of members.

® Seeing whether any pairs of clusters are so close that they should be merged

In module 3 we will look at similarity measures in the context of classification. They will give an indication of
whether classes (and clusters) are too similar spectrally as to be useful.

® Seeing whether some clusters are unreasonably elongated in certain spectral dimensions that it would be
sensible to split them

Elongated clusters are not necessarily a problem, but if they are, then comparison of the standard deviations
of the clusters along each spectral dimension will help reveal their elongated nature (at least in the absence
of strongly correlated data)
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AN EXAMPLE OF UNSUPERVISED
CLASSIFICATION USING k MEANS CLUSTERING

We now consider an application of clustering to unsupervised classification, using a five channel data set of an
image recorded by the HyMap sensor near the city of Perth in Western Australia in January 2010.

HypMap channels used for supervised classification, by clustering

band centre (nm) band width (nm)
176

7 (visible green) 5121.3

15 (visible red) 634.0 16.4
29 (near infrared) 846.7 16.3
80 (middle infrared) 1616.9 14.8
108 (middle infrared) 2152.7 30.2

red - channel 29
green - channel 15
blue - channel 7
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AN EXAMPLE OF UNSUPERVISED
CLASSIFICATION USING k MEANS CLUSTERING

The algorithm was used to find 6 clusters, since inspection of the scene indicated that there were about 6
distinctive cover types, based on the colours shown in the image. The cluster map generated is shown below.

We can see that the clusters, represented by
different colours, seem to follow the visual
patterns of the classes in the image. In particular
it is easy to associate the brown and orange
clusters with highways, road pavements and

bare regions, the yellows with buildings, and the
shades of green with various types of vegetation.
Clearly the dark blue cluster is water.

red - channel 29 4
green - channel 15 We can add supporting evidence to this interpretation

blue - channel 7 of the colours if we examine the cluster means ...
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AN EXAMPLE OF UNSUPERVISED
CLASSIFICATION USING k MEANS CLUSTERING

Classes

background

B building
sparse vegetation

" bare

. trees

B road

Bl water

_ cluster mean vectors (on 16 bit scale)

e ------

1 building 3511.9 3855.7 49316

_ ST
- 10371 14385 1202.3
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AN EXAMPLE OF UNSUPERVISED
CLASSIFICATION USING k MEANS CLUSTERING

Plots of cluster means follow the spectral reflectance curves

o of the ground cover class labels assigned to the cluster. This
is further information that has been used to identify the

2000 = = » clusters.

4000 /\ _ cluster mean vectors (on 16 bit scale)

3000 /\ ]

//%‘ \\J buiding 35119 38557 42437 49442 49316
;ﬁf/ 5\ _------
"%‘ - 13339 15707 2733 27151
: B -------
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UNSUPERVISED CLASSIFICATION REMOTE SENSING

AN EXAMPLE OF UNSUPERVISED
CLASSIFICATION USING k MEANS CLUSTERING

Here we show a NIR versus red scatterplot of the original data along with a bi-spectral plot of the cluster centres.
This is also helpful in identifying the clusters. Note that the four classes of water, road, bare and building lie
almost in a straight line from low to high brightness in this pair of bands, while vegetation lies to the top left.
Such behavior is well-known by remote sensing practitioners.
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