Structure from motion

Structure from motion (SfM) is a photogrammetric technique for estimating three-dimensional (3D)
structures from two-dimensional overlapping images or video sequences. Usual cases are static scene
and moving camera and moving scene and static camera. SfM can be understood as a process of
inversion of image formation. It is widely used in many applications, such as robot navigation,
autonomous driving, and augmented reality. SfM computes 3D scene structure (tie points) and camera
motion which are coordinates of projection centers and camera rotation in space.

SfM algorithm consists of several algorithms and steps to reconstruct 3D structure. First it is necessary
to detect features in images, match features, compute orientation of images and finally it is important to
optimize model, see figure 1.
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Figure 1: 3D reconstruction of cardinal Beran statue, dense cloud with cameras.

1. Find and track features

Features

It is not easy to explain what feature exactly is. But it is natural ability for human brain to find features in
image and across set of images. Feature must be well identifiable in set of images. Feature is
represented by coordinates of image point, but it is not only single point in image. Feature surroundings
is also very important feature property. Let's see figure 2 for more explanation. Image patches A and B
is impossible to determine location of patches by coordinates of single point. We can determine area
where patch A can be placed. It is possible to find several locations for patch B. Patches C and D are
edges. We can find several possible locations but find the right one is still difficult. Patches E and F are
corners, and it is simple to find their exact location in the image [1].
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Figure 2: Image features [1]

Scale-Invariant Feature Transform (SIFT)

There are several corner detectors like Haris Corner Detector and Shi-Tomasi Corner Detector which
were able to detect and match features in the image. These corner detectors are not scale-invariant.
Scale invariance is important when you use set of images with different scales of object. Detected corner
in non-scaled image can be well identifiable but when you zoom in the corner it exceeds pixel window.
The corner breaks down into multiple pixels and it can be impossible to detect this corner again in
zoomed image.

D. Lowe came up with SIFT algorithm in 2004 [2] which solves feature detection in different scales. SIFT
algorithm finds features in scale-space, assign them orientation, compute their description and match
keypoints (features) between images.

Scale-space extrema detection

Scale-space is created for image extrema detection. To find these extrema Laplacian of Gaussian (LoG)
is computed for image with various ¢ values. LoG acts as blob detector. Various sizes of these blobs
are found by o change. SIFT use Difference of Gaussian (DoG) instead of LoG since LoG is costly. DoG
is created as difference of Gaussian blurring of an image using different o values, see figure 3.
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Figure 3: Image scale-space [2].

Features (potential keypoints) are found as local minima and maxima across the scale and space.
Features are compared with its neighbors and with the same submatrix 3x3 in the next and the previous
scales as shown in figure 4.

LA =
L L L T T 7

Scale )
)
)

S S TS
L L L L L LS
A =y = VA
S S
L L e e
ST T T T T

Figure 4: Maxima and minima of the DoG images comparison [2], where X mark is a local minima or maxima.

Accurate keypoint localization

Potential keypoint location is found as maxima or minima of 3D quadratic function fitted to local sample
points. This extremum is tested to remove low contrast keypoints. DoG has great response along edges.
To remove these keypoints Hessian matrix (2x2) is computed. Edges has one eigen value larger than
the second. The ratio between eigen values is tested.

Orientation assignment

Orientation assignment of keypoint is performed on local image properties. Keypoint descriptor is
computed relative to keypoint orientation to ensure invariance image in rotation. Scale-invariance is
achieved by choosing the closest scale of Gaussian smoothed image to the scale of the keypoint.
Gradient magnitude and orientation are computed based on pixel differences of each image sample. An
orientation histogram is created from orientations which are weighted by gradient magnitudes and
Gaussian-weighted circular window with a 0. The highest peak in histogram is detected. For any other
peak above 80% of the highest peak a new keypoint with orientation is created. Finally, a parabola is
fitted to peak and its closest surroundings to achieve better accuracy.



Keypoint descriptor

Descriptor is a vector which describes local image region around keypoint. Image gradient magnitudes
and orientations are computed around keypoint location in Gaussian smoothed image. The coordinates
of the descriptor and the gradient orientations are rotated relative to keypoint orientation to achieve
orientation invariance. Gaussian weighting function with o equals to one half of the width of the
descriptor (circle in the figure 5). This function avoids sudden changes in the descriptor and gives less
contribution to gradients far from the descriptor center. As shown in the figure 4 descriptor is on the right
side and consists of 2x2 histogram array. Each array is orientation histogram of 4x4 region (sample
array) where directions represent orientations, and the length of the arrow is magnitude. To avoid
boundary, effect the trilinear interpolation is used to distribute each value of gradient. 71— dis used as a
weight, where d is distance of the sample from the center. The descriptor is created as a vector of all
histograms. Best results are achieved with 4x4 histogram array created from 16x16 sample array. Then
the descriptor is modified to reduce illumination change. The vector is normalized to unit length to
remove contrast change and brightness change. However non-linear illumination change is not removed
by normalization. The effect of non-linear illumination causes a large change in some magnitudes for
soma gradients, but less for gradient orientations. Large gradient magnitudes are restricted to the value
of 0.2 in normalized vector and then the vector is renormalized.
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Figure 5: Keypoint descriptor creation [2].

Keypoint matching

The best candidate for the match is determined as a nearest neighbor. It is defined as minimum
Euclidean distance for the descriptor vector. Some keypoints achieve incorrect match since they rise
from background, noise or other reasons. In this case it is useful to use the ratio of the closest and the
second closest distance for matching verification. If the ratio is greater than 0.8 the match is rejected. It
reduces false matches for 90%.



Figure 6: SIFT keypoints in the image of statue cardinal Beran.

Important feature detectors and descriptors

SURF (Speeded Up Robust Features)

SURF [3] is faster feature detector and descriptor than SIFT. It simplifies some steps of SIFT. SURF
approximates LoG with Box Filter which speed up calculation. Scale and location are derived from
determinant of Hessian matrix. SURF uses wavelet responses in horizontal and vertical direction and
applying gaussian weights. Image orientation is determined from a plot by calculating all responses in
sliding window. SURF uses wavelet responses for feature descriptor. A feature neighborhood of 20s x
20s (where s is chosen size for feature) is used for descriptor computation which is divided into 4x4
subregions. It forms 64-dimension descriptor vector with extension to 128 dimensions.

FAST (Features from Accelerated Segment Test)

FAST [4] is a corner detector. It is intended as feature detector for SLAM (Simultaneous Localization
and Mapping) technology with limited computational technology. It takes image pixel and creates circle
around this point. Pixels laying at this circle are tested whether they are brighter or darker (threshold
value) than chosen image pixel. This pixel is considered as corner if n pixels at the circle is brighter or
darker than chosen pixel.

BRIEF (Binary Robust Independent Elementary Features)

BRIEF [5] creates unique set of pixel pairs in feature surroundings. Then pixel intensity is of these pairs
is compared and results of comparison are stored into a bit-string (binary vector). Hamming distance is



used for matching descriptors. Hamming distance takes number of different (binary) positions when
compares descriptors.

ORB (Oriented FAST and Rotated BRIEF)

ORB [6] uses FAST feature detector improved for feature orientation and BRIEF descriptor following
this orientation. ORB is free and faster than SIFT and SURF and descriptor works better than SURF.

2. Estimation structure and motion

Epipolar geometry

Epipolar geometry is the geometry of stereovision. It defines geometric relationships between 3D points
and their projections into the 2D image plane. These relationships are based on assumption of pinhole
camera model. Figure 7 below shows the geometry of stereovision.
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Figure 7: Epipolar geometry of stereovision.

Where X is 3D point, C, C’ are projection centers, x, x’ are image coordinates of 3D point X, e, e’ are
epipoles (2D coordinates), /, I’ are epipolar lines and P, P’ are projection matrices.

Projection matrix

Projection matrix defines projection of 3D points into an image plane (2D). Projection matrix P is
multiplication of calibration matrix K, rotation matrix R, translation vector T and vector of 3D point
coordinates X.

X
P33 = K33 [R3x3 T3x1] [1]4 . = K353 " R3y3 [X3x1 - C3x1]
X

Where C is 3D coordinates of projection center.
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Calibration matrix K is shown above. Where f, is focal length for x axis, f, is focal length for y axis, xo, yo
are coordinates of principal point and s is skew parameter. This is full calibration matrix which can be
decreased. Focal lengths ratio f,/ f is aspect ratio and can be removed from computation by defining
one parameter for focal length f. Skew parameter s can be set to 0.

Essential matrix

Essential matrix is a special form of fundamental matrix in sense of normalized image coordinates.
Normalized coordinates are obtained by decomposition of projection matrix P. Let x are image

coordinates and normalized coordinates are %, then £ =K '*x=[R T]*X (X are homogenous
coordinates). Matrix [R T] is called normalized camera matrix. Essential matrix has a form:

E = [T],R
Defining equation for Essential matrix is:
~T -
x" "E*x=0

By substituting x’and % gives equation:
xT KT E-K 1 x=0
xXT-F-x=0
Where F is fundamental matrix and relationship between Fundamental matrix and Essential matrix is:
E=KT-F-K

Essential matrix has 5 degrees of freedom, R and T has both 3 degrees of freedom, but there is scale
ambiguity since Essential matrix is homogeneous quantity. Another constrain is that Essential matrix
has 2 singular values equal, and 3 is equal to zero [7].

Fundamental matrix

Fundamental matrix is defined below and must satisfy for any pair of matching point x’, x (homogenous
image coordinates) in two images [7].

xXT-F-x=0

! ! ! ! ! ! _
X'xfi1 +x'Yfia + XT3 Yy xfor + Y yfor + ' 4 xfo1 + yfar + f33=0
After denotation a set of linear equation is obtained:
! ! / / / /
Xq1X1 X1Y1 X1 YiX¥i YaY1 Y1 X1 Y1 1
Af = : : : : : : : : Hf=0
! ! / / / ! x 1
XnXn XaVn Xn YnXn Yndn YVn n Yn
The solution is right null-space of A. It is done via SVD decomposition.

U-D-VT =svd(4)



f=V:,9

After reshaping fto form 3x3 (F) it is necessary to apply constraint to rank of F matrix. It is done by SVD
cleanup.

U-D-VT = svd(F)
Frank 2 =U-D-VT

Where D is D with last element set to 0.

Epipole and epipolar line

Once F matrix is reconstructed image coordinates of epipole and equation of epipolar line can be
computed. Epipolar lines are defined:

U'=F x1=F""x
Epipol coordinates in the left image are calculated:

[u,d] = eigs(F' - F)
e =u(:,3)

e is defined by homogenous coordinates, so it is necessary to define scale factor by normalizing last
element of e to 1. Epipole of right image is defined in a similar way:

[u,d] = eigs(F - F")
e’ =u(:,3)

Automatic estimation of Fundamental matrix

Modern approach uses automatic estimation of Fundamental matrix. The main role plays RANSAC
algorithm [8]. RANSAC is robust iterative method which estimates model parameters from noise data.
Input into RANSAC algorithm are features of left and right images together with their matches.

a) Compute Fundamental matrix from random sample of 8 correspondences.
b) Find inliers which satisfy F. Inliers are determined based on computed distance between point
x; and epipolar line. This distance is compared with threshold.

Solution is F with largest number of inliers. Afte that refine F by non-linear Least squares.

Reconstruction R and T from Fundamental matrix

First it is necessary to extract Essential matrix from Fundamental matrix. If camera calibration matrix is
unknown it can be estimate from image metadata. Then Essential matrix is achieved from relation of
Fundamental and Essential matrix. SVD of E is:

1 0 0
E=U|0 1 o|VT
0 0 O



Where U = [U1 U Uz] and vector u; is nullspace of E. Thus T = u; or —us. First camera projection
matrix is chosen as P = [I 0] and second camera projection matrix has 4 possible solutions, as shown

in the figure 8.
P=[U-W-VT +ug] |[U-W-VT —ug] | [U-WTVT +us]|
[U-WT-VT —u,)

0 1 0
W=|-1 0 0
0 0 1

If det(R) =-1,then T=-Tand R = -R.

A

Figure 8: 4 solutions for reconstruction from E [7].

Right solution for P’ can be achieved by point triangulation. 3D point must lie in front of image planes.

[l=P )] =7 3

Cross product of parallel vectors is equal to 0. Apply this rule to equation above we achieve system:

_ xl_ -
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It is necessary to use Least squares if rank(F) is greater than 2.




3. Bundle adjustment

Bundle adjustment is computational method for simultaneous refining 3D points in the scene, exterior
orientation parameters (camera orientation parameters) and interior orientation parameters (camera
calibration parameters). This process is computationally challenging. Bundle adjustment minimize
distance between image point coordinates and reprojection of 3D point into the image plane. Below is
basic equation written in Euclidean form:

. Pl:z(x,R,T, C) X
- P;(x,R,T,c)-X

Where x are image coordinates of point, v is correction, P is projection matrix, R is rotation matrix, T is
translation vector, ¢ are distortion parameters and X are 3D point coordinates.

x+v

System to solve is:
Al+v=A-Ax
Where Al are observations (2D points) and Ax are unknowns.

Normal solution is shown below but it would be very tricky to solve this system.
Ax = (AT-271-A)"1- AT -371AL
Where X is block diagonal covariance matrix.

Since A matrix is sparse matrix, it is possible to decompose A matrix and vector of unknowns:
Ak
M+v=[c Bl
[ Bl{,,

Where Ak are unknown 3D points and At are orientation parameters.
Normal matrix is then divided into 4 submatrices.

ct-z71.¢c ¢cT-x'-B

AT .yv=1.4 _[CT].s-1. _
N=AT-5 A—[BT]Z [€ Bl=|%rgm1. s pr.y-1.p

:[Nkk th]
Nee N

Where N, is almost diagonal matrix containing 3x3 blocks for each point, N;; is almost diagonal matrix
consist of 6x6 blocks for camera orientation, N,, and N, = N, links camera orientations with point
observations via 3x6 blocks and

Ny = diag(Nyixi), Niigi = z Cij -2 - CF;
JjeBj
Ny, consist of submatrices Ny;,; which summarizes all images where a 3D point is visible.
Nye = diag(Njej ), Nejej = Z By~ X' - Bjj
l€Pj
N, consist of submatrices N,;;; which summarizes all visible points in the image.

o, y-1.pT
Niiej = Cij - Xi5 - Bjj



If system is rewritten by normal equations, we achieve:

Ny th] Ak _[hk] [hk]_ T .v—1.
Nix  Ngt At]_ he]’ Lh: =4z Al

Now can be system solved by adding matrix.

Nk 0 [Nkk th] [Ak] _ Nix 0 [hk]
—Nye - Nt I INge  Neel LAt —N, - Nt 1Lk

[1 Nyt * Nyt ] [Ak] _ [ N - hy, ]
0 Ng—Nge 'Nk_k1 * Nt At ht_Ntk 'Nk_k,1 ) hk

Reduced normal system from the 2" row is:
N —h. N.. — N1 h —h.— it
Ntt At = ht! Ntt - Ntt_Ntk Nkk th' ht - ht Ntk Nkk hk

Ng;! is easy to invert since it is possible to invert just each block of sparse diagonal matrix or use sparse
solver. When At is determined it is easy to determine Ak from 15t row of reduced normal system:

Ak = Nig - (hie—Ny - At)

Multi-View Stereo

Multi-View Stereo algorithms are designed to reconstruct detailed 3D models from obtained images.
MVS is solved as image\geometry consistency optimization problem. MVS focus on robust
implementations of photometric consistency measures, and efficient optimization algorithms. MVS main
algorithms to 3D reconstruction are Depth map reconstruction and Point-cloud reconstruction, another
algorithms for data fusion and refinement are Volumetric data fusion and MVS mesh refinement [9].

Photo-consistency measures

For a given set of images and a 3D point (p) seen by all the images is photo-consistency of p seen by
images /; and /; written as:

Cijpy = pUL; (U (p))), 1; (1 (p))))

Where C;;,,) is photo-consistency, p(f, g) is similarity of vectors fand g, m;(p) is projection p on image
i, Q(x) is support domain (kernel) around point x and [;(x) are sampled image intensities within the
domain (kernel window).

Example of rectangular 3x3 photo-consistency domain Q which is centered around pixel point e is shown
in the figure 9. Photo-consistency is comparing 1D vectors containing image intensity in the domain.

Image intensities in the domain are ordered into 1D vector f = (a,b,c,d,e, f,g,hi).
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Figure 9: Photo-consistency domain around point e and transformation into vector [9].

For photo-consistency measures it can be used Sum of Squared Differences (SSD), Sum of Absolute
Differences (SAD), Normalized Cross Correlation (NCC), Census, Rank and Mutual Information (Ml).

Normalized cross correlation

Zero-mean normalized cross correlation (NCC) is one of the most MVS photo-consistency measures. It
is invariant to changes in grain and bias. It is widely used when illumination and material invariance is
necessary. NCC usually fails due to lack of texture or repetitive textures. The main reason to use NCC
is its accuracy. The NCC similarity measure is:

RO

O-f ' O-g

pPncc(f,9) = [—1,1]

Where f is the mean of f and oy is standard deviation of f.

For handling color images, it is recommended to compute NCC independently per channel and compute
average NCC score.

1. Depth map reconstruction

Depth map scene representation is very popular due to its flexibility and scalability into large models.
Depth map can be reconstructed even for small number of neighboring images. Depth map can be
imagined as an 2D array of 3D points. A scene represented by depth maps can be thought as merged
3D point cloud model. Depth map reconstruction takes a set of images and image parameters adjusted
by SfM, and compute 3D geometry for reference image.

Winner-Takes-All algorithm

Is one of a simple depth map reconstruction algorithm. Photo-consistency values are computed along
epipolar line for each neighboring image. Depth value is computed from the highest photo-consistency
score which is achieved from a set of photo-consistency functions (neighboring images), see figure 10.
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Figure 10:Winner-Takes-All algorithm [9], the highest NCC score of photo-consistency function is used for depth
reconstruction.

Robust Photo-Consistency Depth maps

Occlusions and other effects bring noise to photo-consistency function. For pixel in the reference image
algorithm computes photo-consistency functions of neighboring images. Local maxima are identified
from a set of photo-consistency functions. Robust photo-consistency function C?(d) is given:

CR(d) =) G W-(d—dy)
k

Where W is a kernel function (weight).

Simple average gives incorrect depth, while robust photo-consistency gives right depth, see figure 11.
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Figure 11:Robust photo-consistency function [9].



Depth map reconstruction another approaches

Thresholding photo-consistency scores can be another approach. Algorithm ignores photo-consistency
scores below a chosen threshold. Markov Random Field (MRF) Depth maps is a combined solution that
considers photo-consistency and spatial consistency together. Spatial consistency uses an assumption
that neighboring pixels have similar depths.

The main disadvantage of depth maps is how to merge them into 3D scene. The quality of depth map
is decreasing with depth discontinuities and occlusions. The accuracy of the depth map is inverse to the
distance to the surface. Optimization of depth maps is very large and computationally expensive.

2. Point cloud reconstruction

Point cloud or patched based surface is less computationally expensive for optimization. Point cloud
reconstruction algorithms are using spatial consistency assumption and expand point cloud on the
surface during reconstruction process.

Patch based reconstruction

Patch can be imagined as a tangent plane to reconstructed surface. For patch p algorithm determines
its position ¢(p) and normal vector n(p). Photo-consistency function is extended and consist of position
of patch and surface normal.

Initial step

First step use detected features and triangulate them (if they are not yet triangulated). For initialization
c(p) is achieved from triangulation and n(p) is set to image projection center. Detailed description of
algorithm is in the figure 12, for more details visit [10].

Input: Features detected in each image.
Output: Initial sparse set of patches P.

Cover each image with a grid of B x Bpixel® cells;
P—¢:
For each image [ with optical center O
For each feature f detected in [ and lying in an empty cell
F — {Features satisfying the epipolar consistency }:
Sort F in an increasing order of distance from O;
For each feature " € F
R(p) —L;T(p) — {JIN(p,R(p),J) =z o}
¢(p) < 3D point triangulated from f and f;
n(p) — Direction of optical ray from ¢(p) to O,
n(p).c(p) — argmax N(p):
S(p) — {JIN(p.R(p).J) = o }:
I'(p) — {JIN(p.R(p).J) z ou }:
If|T(p)| > v
register p to the corresponding cells in S(p);
exit innermost For loop, and add p to P.

Figure 12: Initial feature matching algorithm [10].



Expansion

Algorithm identifies neighboring cells of patch p which do not contain any patches. For each empty cell
a new patch p’is created. Normal of patch p’is set as equal to patch p. Set of images where the patch
p’ is visible is set as the same for patch p. Position ¢(p’) is initialized as point where viewing point
intersects patch p plane. Optimization can be started. During optimization patch position and normal of
the patch are adjusted and set of images where new patch is visible is updated. Figure 13 shows patch
expansion algorithm, more details in [10].

Input: Patches P from the feature matching step.
Output: Expanded set of reconstructed patches.

Use P to initialize, for each image, O, O, and its depth map.
While P is not empty .

Pick and remove a patch p from P;

Foreach image I € T(p) and cell C(i, /) that p projects onto
For each cell C(i', j') adjacent to C(i, j) such that Q; (7', j’)
is empty and p is not n-adjacent to any patch in Qf(i' )

Create a new p’, copying R(p'),T(p') and n(p') from p:

¢(p') « Intersection of optical ray through
center of C(i’, j') with plane of p;

n(p'),c(p') — argmaxN(p'):

S(p') < {Visible images of p’ estimated by the
current depth maps } U T(p');

T(p") —A{JeS(PIN(P R(P').J) =z on }:

If |T(p") < ¥|, go back to For-loop:

Add p' to P;

Update O;. Qs and depth maps for S(p’):

Return all the reconstructed patches stored in O and O;.

Figure 13: Patch expansion algorithm [10].

Filtering
For filtering a distance along the normal is compared to a chosen threshold (y,).

|(c(P) — c(@)) - n)| + |(c(P) — c(P))  n(P)| <4
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