
Fundamentals of photogrammetry 

1 Introduction to photogrammetry 
1.1 Inclusion of photogrammetry 
Classical photogrammetry is one of the sciences that deal with obtaining a large amount of 
information about objects based on exact measurements. There are several definitions of 
photogrammetry, and they change over time depending on the use of the results and the 
technology used. To name a few: 

 
Photogrammetry is the science, method, and technology that deals with the acquisition of further 
usable measurements, maps, digital terrain models, and other products that can be obtained 
from an image, most often a photographic record (International, ISPRS) 

or 
Photogrammetry is a discipline that deals with the extraction of geometric information from an 

image record 

Traditional photogrammetry is based on the photographic record. The word photography has its 
origin in Greek (Photos - light and Graphos - drawing, record). Photographic recording can be done 
in the form of an analogue light-sensitive layer (classical photography) or digitally. Various devices 
with different output accuracy can be used to obtain the image - from ordinary amateur cameras 
to special photogrammetric cameras. The acquired image - a snapshot, is used to capture the 
surrounding reality. From the position of points on the measurement images it is possible to derive 
the shape, size and location of the object of measurement in space, to determine the relative 
spatial position of individual points, to evaluate the position and elevation, etc. The word 
photogrammetry was first used by Meydenbauer (1858) and he used a total of three Greek words 
for it: Photos - light, Gramma - record and Metrie - measurement. 

 

Photogrammetry as a source of primary information 

Localized information is a fundamental input to decision-making in the landscape and in human 
activities, and its importance is increasing. The speed with which we can acquire the necessary 
information plays an important role. Its timeliness, comprehensiveness, longevity and quality 
significantly influence its price. Thus, intensive development is being seen in the fields that 
primarily acquire data and in the fields that enable data analysis leading to optimal decisions. 
This is provided by the information systems known as GIS (Geographic Information System). GIS 
have different degrees of accuracy regarding what they are used for; therefore, their mapping parts 
also have corresponding accuracy. Geodesy and cartography, if we think of it as a discipline 
supplying primary information about the territory, has three main sources of positional 
information with different accuracies: 

1) basic geodetic methods (mapping and surveying using total stations, GNSS, etc.): cm area and 
better 

2) photogrammetry (aerial, terrestrial and satellite): cm and dm area, excluding m 



3) remote sensing (satellite and airborne): area m, km 

The photographic image - as a carrier of information - can be used in various ways. 
Photogrammetry is mainly concerned with precise measurements on images, DPZ with 
measurements as well as the detection of quantitative and qualitative aspects of the objects 
depicted. Photointerpretation of images is the graphic or descriptive expression of content, the 
expression of various features that speak to the quality of the depicted object, carried out by 
trained persons for a precisely defined purpose, without making extensive measurements on the 
images; it was carried out in this way, especially during the World Wars and in the 1960s in the 
military on analogue images, but today it has lost its importance in this form and has been 
replaced by automatic methods on digital images and artificial intelligence (AI). Nowadays, 
especially with the advancement of technology and computing, there is a slow merging of 
previously separate disciplines such as remote sensing (RS), aerial and satellite image 
interpretation and photogrammetry into one new science using advanced computing and digital 
technologies (digital image processing). It is becoming one of the most important suppliers of 
localised information for Geographical Information Systems (GIS). 

 

1.2  Use of photogrammetry 
 

The ideal photographic image is the central projection of the subject. In photogrammetry, in 
simplified form, it is a process of converting the central projection, which is not suitable for 
displaying facts on maps, into a rectangular projection used for maps. Some of the procedures of 
photogrammetry can in this respect be included in descriptive geometry, where similar problems 
were solved long before the invention of photography. 
However, modern methods of photogrammetry no longer suffice only with the knowledge of 
descriptive geometry. Image processing is considerably more complex, based on sophisticated 
mathematical principles and solved nowadays by using special software and digital images on 
computers. Previously, analogue procedures had to be used on very sophisticated and complex 
mechanical-optical plotters, later analytical plotters, but always measured on original analogue 
images. The main difference between photogrammetry and other measurement methods is that 
the collection and measurement of information is not carried out on the object of measurement 
itself, but on the measurement images. The images can be taken at short notice, thus showing the 
immediate state of the object, and the measurement can then be carried out independently in the 
laboratory, in a quiet and modern working environment. The images have an important 
documentary value, the measurements can be supplemented, verified and extended with new 
findings at any time. Periodically repeated imaging extends the knowledge of changes in the object 
of measurement with time and thus provides additional important information for other scientific 
disciplines. Photogrammetry in general reduces the time for collecting information and for 
processing it. Particularly for medium and small-scale mapping, very significant financial and 
time savings can be obtained compared to mapping with conventional surveying methods. In 
many cases, no other method than photogrammetry can be used - for example, mapping 
inaccessible or remote locations or large areas. 

 
Photogrammetry has found application not only in the field of geodesy and cartography, where it 



has long been used as an important mapping method, but also in various other areas of human 
activity. Among the most used are: 

 
(a) construction: documentation purposes, documentation for reconstruction, measurement of 
deformations of buildings and their parts 
(b) conservation: documentation of heritage 
(c) monitoring the progress of construction or extraction of raw materials, inventory of landfills 
(d) agriculture: monitoring of seeding plans, slope gradients and exposure 
(e) forestry: stand maps, logging progress, calamities 
(f) water management: determination of digital terrain model, catchment modelling, extent of 
flooding 
(g) engineering: surveying precision engineering products, monitoring the accuracy of assembly 
of large parts, e.g. in shipbuilding 
(h) medicine: documentation, monitoring of rehabilitation results, plastic surgery, dental 
applications, movement studies, ergonomics 
(i) anthropology 
(j) Police: criminalistics, documentation of serious traffic accidents 
(k) ecology: landfill monitoring, pollution 
(l) urban planning, 3D urban models 
design, shape determination and modelling  

 

1.3  Historical overview 
OVERVIEW OF THE DEVELOPMENT OF PHOTOGRAMMETRY  

The theoretical beginnings of photogrammetry date back to a time long before the invention of 
photography. Considering that images are central projections of measurement objects and 
photogrammetry deals with their measurement, the beginning of photogrammetry can be dated 
back to 1032, when the Arab scholar Al Hassan bin Al Haithm (965-1039) first described the 
"camera obscura". Today, for example, this discovery is depicted on an Iraqi banknote (Figure 1). 

 

 

Fig.1.1: The principle of centre projection 

 



During the Renaissance, Leonardo da Vinci (1452-1519) described the "pinhole camera" for the 
construction of central projections. However, pinhole cameras were not much used because of 
their low luminosity. The camera, equipped with a conjugate lens and a concave mirror, was 
described by G.B. della Porta in 1588 (Foundations of Cinematography). The construction of the 
light camera, which was perfected under John Kepler as "camera clara, camera lucida", laid the 
first real foundation for photogrammetry. In 1605 Galileo Galilei invented the telescope, in 1657 
Schott Kasper constructed the first portable camera (box camera). In 1727, J.H.Schultze 
investigated the photochemical effect of light, which led to the invention of light-sensitive AgNO3 
in 1750( G.B.Beccaria) and the invention of the higher-quality AgCl in 1777 (C.H.Scheele). The 
reconstruction of the obtained perspective images was the subject of theoretical papers by Taylor 
(1715) and J.H.Lambert (1759). The first practical reconstructions of perspective images were 
carried out by M.A.Cappeler (1726) in the Alps, and later by Beatemps-Beaupré (1791-1792) for 
the acquisition of a plan of the coast of the island of Santa Gruz. However, these methods required 
hand-drawn images, considerable painting experience and could not be widely applied. They fell 
almost into oblivion. They were revived again after the invention of photography by Niepce and 
Daquerre (1839), the name of the photograph coming from J. Herschel in the same year. Already 
two years after the invention of photography, the Slovak scientist Prof. J.M. Petzval constructed a 
modern lens, introduced exact computational methods into geometrical optics and thus 
contributed to the development of photogrammetry. In 1851 W.H.Talbot was the first to use 
photographic paper and F.S.Archer invented colloidal wet plates. The first aerial photographs were 
taken by the famous French photographer G.F.Tournachon (called Nadar) in 1858. The first 
phototeodolite was designed by A.Laussedat (1859). From 1860 came the images of Boston taken 
from a balloon (J.W.Black and A.King) and the first military use during the US Civil War (T.Lowe). 
For the purposes of practical photogrammetry, photography was first used in France for mapping 
in 1861. For mapping, the method of cross-sectional photogrammetry "métrophotographie" was 
used. The name "photogrammetry" dates back to 1858, when it was used by the German A. 
Meydenbauer, who is also considered the pioneer of photogrammetric documentation of 
historical objects. Commissioned by the Prussian state, he later created a unique archive of about 
16,000 photogrammetric images of historic buildings between 1885 and 1909, some of which are 
still extant, and developed practical graphic methods for photogrammetric evaluation, especially 
of building facades. In 1873 the English photographer J.Burger used gelatine emulsion for 
photographic plates and in 1874 R.Kennett produced dry plates. The invention of film by 
G.Eastman in 1884 (paper film) and its introduction into practice in 1889 (celluloid film) brought 
great progress, especially for later aerial photogrammetry. In the same year G.Eastman 
constructed the first roll film camera. In 1886 the pictures of Kronstadt were taken by 
A.M.Kovaňek, in 1890 the first classical aerial photocamera was constructed by the French 
company Pathé. The first practically used phototheodolites were constructed independently by 
Porro (Italy, 1865), Koppe and Finsterwalder (Germany, 1896, 1895). In 1904 the Zeiss Jena 
company constructed the phototheodolite 19/1318, which was practically produced under the 
name PhoTheo until the 1960s and for terrestrial photogrammetry. Later these cameras were 
replaced by more modern cameras like the UMK Jena or Wild. 

Technologically, intersection photogrammetry was used, which represents forward intersection 
as we know it from geodesy. However, this way of working has a major drawback in the difficulty 
of identifying corresponding points on the images. A new technology was therefore sought to 
remove these shortcomings. It was found in the late 19th century in the relatively simple principle 
of stereoscopy. In 1892, F. Stolze took stereo images and proposed the principle of spatial 
measurement marks. In 1894 Hauck proposed a stereoscopic evaluation device. The practical 



pioneer of stereophotogrammetry was C.Pulfrich (Zeiss Jena), who in 1901 constructed the first 
device for stereoscopic measurement of image coordinates - the stereocomparator. This is still 
the most accurate instrument for measuring on images. Stereophotogrammetry made it easier to 
identify points on images and increased the accuracy of photogrammetry enormously. The design 
of the stereocomparator also laid the foundation for later analogue evaluation machines, and for 
the introduction of elements of mechanization and automation in evaluation work. The 
stereocomparator, however, allowed only spot evaluation of images and required laborious 
computational and imaging work. The improvement of the stereocomparator and the 
mechanization of the computational work by introducing elements of mechanical analogy was 
greatly contributed to by E. Orel, a member of the former Geographical Institute in Vienna, who in 
1909-1911 constructed the first "Autostereograph", which was produced from 1909 in the Carl 
Zeiss Jena works as the "Stereoautograph". This simplified and facilitated the construction of the 
position and elevation components of the map from stereophotogrammetric images.  
Terrestrial photogrammetry could only be used advantageously for mapping smaller areas of clear 
view or in the mountains. Larger portions of the land surface can be more economically mapped 
using aerial photogrammetry, where the photographic instrument is placed in an aircraft (or 
formerly a balloon). The theory of aerial photogrammetry was developed in the late 19th century 
by Austrian Th.Scheimpflug. In 1911 he also constructed the first redrawer for redrawing a tilted 
image of flat terrain to the scale of a map.  

 

Aerial photogrammetry came into being only at the beginning of the 20th century with the 
development of aviation (Wright brothers, 1903). In 1909 L.Blériot flew across the English Channel 
and in March 1912 Captain C.Pizza took the first ever photographs of the Turkish lines from an 
aeroplane for military use during the Italian-Turkish conflict. Very quickly this technology with the 
interpretation of images spread already in the First World War. 
At the beginning of World War I, more than half of all aircraft were used for aerial photography. A 
"projection multiplex" was used to evaluate stereoscopic images. 

In 1915, Gasser produced the first double projector for processing pairs of aerial images. In the 
interwar period, there was a rapid development of analogue plotters that performed 
reconstruction (analogy) of the state during the imaging and subsequent evaluation of the image 
content from the model form to the selected map output. Different designs were developed on 
the basis of optical (double projector, multiplex), optical-mechanical (Stereoautograph) and 
mechanical (Wild A5). In 1920 R.Huggershoff constructed the first Autocartograph. Already in 
1923, the first Stereoplanigraph was constructed at the Carl Zeiss factory in Jena according to 
Bauersfeld's design. Independently of these German constructions of photogrammetric analogue 
plotters, constructions of photogrammetric instruments and aids appeared elsewhere in the 
world. In France the first Stereotopograph of Poivilliers was constructed, in Switzerland the first 
Autographs of Wild, in Italy the first machine constructions of Nistri and Santoni. 



   

Fig.1.2: Historical photogrammetry - military photography and image processing 

 

A great boom in aerial photogrammetry was recorded in Russia after Lenin's decree on the 
establishment of the State Geodetic Service (1919), as large parts of the territory of the former 
Russia were not sufficiently mapped and some not even at all. In terms of speed, aerial 
photogrammetry was adopted as the basic mapping method. Due to the isolation of Russia after 
the Revolution, it was necessary to organise research, to look for new technological methods and 
to create the necessary base to produce photogrammetric instruments and tools. Their designer 
was mainly F.V.Drobychev. Russian photogrammetric procedures and instruments at that time 
were different from the rest of the world. They were in many cases less accurate, but simpler and 
much faster to work with than classical procedures. In a relatively short period of time, it was 
possible to map huge areas. 

 
Technique and technology began to develop very rapidly. In 1935, the first Kodakchrome colour 
film was launched. However, the development of photogrammetry was temporarily interrupted by 
the Second World War. During the Second World War, some new chambers and machines were 
constructed and methods of using photogrammetry were developed, but mainly for military 
purposes. Systematic research and further development of photogrammetry for non-military and 
economic purposes did not take place again until after 1945. 

Other types of photogrammetric plotters were developed like "differential redrawers", which 
converted the central projection to orthogonal projection also in the area with vertical division 
("orthophoto") and enabled the development of a new "integrated method „of aerial 
photogrammetry.  
Around 1960, the first electronic correlation systems were developed which allowed for semi-
automatic processing ('stereomats'). With the development of computer technology, an 
evolutionary shift towards analytical methods began. Analytical methods of photogrammetry had 
been known for a long time but were not used because of their numerical complexity. It was 
necessary to wait for sufficiently fast computers with significant memory capacity. The reason for 
the effort to construct an analytical plotter was that the measurement of image coordinates on 
stereo or monocomparators was absolutely the most accurate. Further, if we have the image 
coordinates of individual points, we can correct them numerically for various effects and the 
outputs can be stored in digital form. Newly developed analytical methods based on the work of 
Gast (Germany, 1930) were presented by Schmid and Schut (USA,1953,1958). These led to the 
construction of precision comparators (PSK, Kern MK1), to the development of aerotriangulation 



programs (e.g. Ackerman 1964, Brown 1967) in versions for block or bundle alignment (e.g. PAT-
M, BLUH, etc.). The final product was the construction of an analytical plotters that combined the 
basic strengths of the analytical methods. The principle of an analytical plotter based on the 
solution of a direct relationship between image and geodetic coordinates was put forward by the 
Finnish photogrammetrist U. Helava as early as 1957, but a commercially successful design had 
to wait a full twenty years. The basis of the analytical plotter was practically a stereocomparator 
with motorized movement of the images in the carriers, digital readout of the position of the 
controls and a powerful computer with an operating program (originally AP/C - Bendix/OMI 1964, 
Planicomp C100, Zeiss 1976, DSR-1, Kern 1980, Aviolyt AC-1, Wild 1980). Analytical plotters saw 
a rapid development after 1980, when computing technology took the form of a sufficiently fast 
personal computer. Due to the evolution of technology and advances in technology, analytical 
photogrammetry had a short life. Already in the 1990s it was replaced by digital technology.  

The truly revolutionary change came in the mid-1980s. The breakthrough in computer technology 
enabled the first digital systems to be developed and digital photogrammetry ("softcopy 
photogrammetry") was born. After 1988, stereo-photogrammetric workstations capable of 
processing virtually any measurement image in a very loose configuration were developed (e.g. 
Imagestation/ Intergraph, Leica/Helava, Phodist/Zeiss, etc.). With the new possibilities of 
computer technology, intersectional photogrammetry via réseau cameras was reintroduced (e.g. 
RolleiMetric, 1986). New applications, simplification of image capture and cheapening of the 
whole process were brought by new digital cameras (after 1995). The ease of use of digital 
cameras, their constantly improving parameters and the existence of programs for direct 3D 
evaluation based on conventional images (e.g. Photomodeler) lead to the availability of digital 
low-cost photogrammetry to a wider professional public. A breakthrough in technology can be 
found after 2010, when automated photogrammetry technologies based on SfM (Structure from 
Motion) and MVS (Multi View Stereo) principles became widespread. This allows even complete 
laymen to use digital automated photogrammetry to create high quality textured 3D models. 
Nowadays, Agisoft Metashape, RealityCapture, etc., are prominent representatives. 
Another distinctive feature has become the merging of photogrammetry and remote sensing, 
which brings satellite technology into the field of photogrammetry as well. The use of artificial 
Earth satellites, until recently only in the field of small and medium scale mapping, has been 
extended to large scale mapping thanks to new operating systems with resolution below 1 m (after 
1999) and in many countries they are used for cadastral surveys. Satellite multispectral and 
panchromatic imagery is used for mapping and thematic mapping. In addition to the now obsolete 
conventional film cameras, scanning radiometers (scanners), which operate over a wider spectral 
range and allow stereoscopic imaging, and SAR ('Synthetic Aperture Radar') systems, which can 
be used to produce elevation maps in the form of DRM (Digital Relief Model), are mainly used. 
Laser scanning, used in both terrestrial and mobile terrestrial and airborne applications, became 
a novelty after the turn of the millennium. The result, as with automatic digital photogrammetry, 
is a point cloud. If laser scanners are also equipped with a camera, the point cloud is textured, as 
in photogrammetry, and used to create 3D mesh models. In the case of larger objects, it is 
possible to talk about the creation of a digital twin. 

 
 
 

 

 



2 Basics of photogrammetry 
2.1 Overview and classification of photogrammetric methods 
 
Photogrammetry as a method of non-contact determination of spatial coordinates of objects has 
been performed for about 150 years. During this period, it has undergone a very heterogeneous 
development. The first half-century was marked by the search for the application of a new 
method, exploration of the foundations and taking images, technologically only intersection 
methods of terrestrial photogrammetry were used. The beginning of the 20th century brought 
stereoscopy and aerial photogrammetry, which led to the construction of a few very sophisticated 
analogue plotters for image evaluation. This is how photogrammetry developed for the next half 
century. In the last fifty years, with the development of computers, the former concept of 
photogrammetry has changed completely, gradually moving to analytical methods and, since the 
1990s, to digital methods, which marked a major technological change and became completely 
dominant at the turn of the century. Satellite photogrammetry and laser scanning technology 
were developed, which, in conjunction with digital photogrammetry, brought a completely new 
view of 3D object documentation. 

During its development, photogrammetry has been divided into different types according to the 
methods of image acquisition and evaluation. In different parts of the world, photogrammetry is 
classified differently. Classical European photogrammetry was divided into terrestrial and aerial 
photogrammetry, because terrestrial photogrammetry started in Europe and because 
technologically, they were different processes. Equipment for e.g. terrestrial photogrammetry 
could not be used for aerial photogrammetry. This division has traditionally been presented in 
Central and Eastern Europe, as analogue equipment and procedures that corresponded to this 
division were used practically until the 1990s. This entailed different designations, e.g. coordinate 
axes, angles, etc. Nowadays, this division has little relevance as all types are now handled with 
the same technology and even on the same equipment. In Western countries, no great distinction 
was usually made between terrestrial and aerial photogrammetry, the theory being derived for 
aerial photogrammetry, and terrestrial photogrammetry was regarded as a special application 
whose share in the total photogrammetric work was only a few percent. However, in the last few 
years the situation has changed, with the development of high-quality digital cameras terrestrial 
applications are increasing and separate programs with their own markings or specialized 
modules for terrestrial applications are emerging. Currently, photogrammetry can be divided 
according to: 

- position of station 

- the number and configuration of the images to be evaluated 

- the technological method of processing 

- type of output 

The individual types will be briefly described in the following text, more detailed information is the 
focus of the following text. 

 



1. According to the position of the station from which the image was taken, photogrammetry 
can be divided as follows: 

Terrestrial ('ground-based', close-range) photogrammetry 

In the terrestrial photogrammetry method, the station is usually stationary, located on the Earth. 
Historically, it has been possible to geodetically determine the exact coordinates of the stand and 
the spatial orientation of the image (they were not in motion) when taking photographs. The 
images were taken based on precise alignment and positioning of instruments; therefore, 
processing such images is easier. However, the disadvantage of terrestrial photogrammetry is 
that the individual objects of measurement are mutually occluded, and the image often contains 
a significant part of non-evaluable areas (hidden spaces), and it has another significant 
disadvantage - the accuracy of measurement in the spatial component (distance to the object) 
decreases with the square of the distance. For this reason, in particular, terrestrial 
photogrammetry is suitable for objects that are approximately equidistant (house facades, steep 
riverbanks, quarry walls, rocks, etc.). The range of terrestrial photogrammetry depends on the 
camera and is up to 500 m in extreme cases, but tens of metres in classical cases. Recent trends 
are special applications of terrestrial photogrammetry, which can be found in a few completely 
different fields (medicine, design, engineering, etc.), the great development in the documentation 
of e.g. monuments is mainly due to affordable digital cameras and processing programs. This 
whole field is called "Close Range Photogrammetry" in the English literature and its importance 
is growing. 

Aerial photogrammetry 

In the aerial photogrammetry method, the station for taking the image is located in an aircraft or 
other moving vehicle. The image shows a much larger area than in terrestrial photogrammetry. 
The disadvantage is that the spatial position of the image at the time of acquisition cannot usually 
be determined with sufficient precision and therefore the processing methods will be more 
complex than with terrestrial photogrammetry. As the images taken are mainly approximately 
perpendicular, the distance from the point of photography to the objects (relative to the flight 
height) is approximately the same and therefore the accuracy of the evaluation is approximately 
the same. It is in this area that significant progress has been made recently, due to the 
introduction of GNSS/IMU devices that allow the determination of the exterior orientation 
features of individual images in flight. 

Satellite photogrammetry 

Satellite photogrammetry originated in the 1960s, based on spy and interpretive imagery from 
specialised satellites. Satellite imagery was also used in our country to create photomaps. 
Practical civil application came after the launch of the Spot-1 satellite in 1984, as the satellite 
was equipped with an electronic scanner with a resolution of 10 m in panchromatic mode with 
the possibility of creating stereo images. However, the images obtained in this way could not be 
evaluated on conventional equipment and special software in the field of digital photogrammetry 
had to be developed. Today satellite photogrammetry is a special but otherwise common 
technology, and the resolution of today's commercial satellites is about 30 cm! 

Drone photogrammetry 

After the turn of the millennium, the first designs of unmanned remotely piloted flying devices, 
popularly called drones, began to appear. The correct name RPAS (remotely piloted aircraft 



system) has not become very popular, and UAV or UAS (unmanned aerial vehicle, or unmanned 
aerial system) is often used. By system, we mean the whole, including the ground segment to be 
piloted. Drones have expanded considerably since 2010 and there are now several commercial 
high-quality systems not only for photogrammetry, laser scanning and remote sensing. 
Multicopters, which are cheaper and can easily fly around smaller objects, dominate, but winged 
systems with greater endurance in the air and longer range are also in use. From the point of view 
of photogrammetry, especially multicopters for heritage purposes are excellent helpers. 

 

 
2. According to the number of images evaluated, photogrammetry is divided into: 

Single-image photogrammetry (obsolete) 

Single-image photogrammetry uses only single measurement images. Since only plane 
coordinates can be measured on a single image, single-image photogrammetry can again only 
determine the plane coordinates of the object of measurement and can be used when the object 
of measurement is plane or close to plane. The relation describing the solution of single-image 
photogrammetry is called collineation and is expressed by a projective transformation. Terrestrial 
photogrammetry uses single image methods for the creation of photomaps of planar objects, e.g. 
not very rugged facades of houses, in aerial photogrammetry the axis of view is mostly vertical, 
therefore single image methods can be used to obtain the positional component of a map of a flat 
area; however, oblique images can also be processed in the same way, again assuming the 
flatness of the area being evaluated. In the case of spatial division of such an area, radial 
displacements of individual objects occur, which prevent an accurate evaluation. However, for 
certain work this is a very simple and inexpensive method. 

Multi-image photogrammetry 

Multi-image photogrammetry is used for 3D processing and always requires at least two 
overlapping images. Only 2D coordinates can be determined from a single image, and to get to 
3D coordinates we need another measurement - that is another image. The object to be 
measured must be simultaneously displayed in both images and from the image coordinates of 
the same object in both images, its 3D spatial position can be calculated.  

If the images have at least approximately parallel shot axes, stereoscopy can be used. To process 
the content of the images, an artificial stereoscopic perception is used, which makes it possible 
to create a spatial model of the object of measurement, we speak of stereophotogrammetry. 
Stereophotogrammetry, due to its versatility, is the most used today.  

If the axes of the images are convergent to each other, we speak of a multi-image spatial 
intersection (resection, Multiphoto Orientation). Technologically, this is intersection 
photogrammetry. A convergent set of oriented images can only be evaluated pointwise (or by 
individual elements - partial primitives in the image) provided that the same point or object can 
be identified in at least two images. 

1. According to the method of image processing, i.e. according to the method of converting image 
coordinates to spatial coordinates in the chosen coordinate system, photogrammetry can be 
divided into the following technologies: 

Analog (historical) methods 



In this technology, which is no longer used today, an analogous state to that of the actual imaging 
was created mechanically, optically or by a combination of the two. Analog image processing 
requires the use of precise, complex, single-purpose analogue plotters, which are no longer used 
today. For completeness, the production of analogue plotters at the Zeiss Jena factory was 
discontinued only in 1990. 

Analytical methods (out of date) 

Here, a difference must be made between analytical evaluation of the image content and 
analytical plotters.  

Analytical image content evaluation uses a spatial transformation, which is solved on a 
computer, to convert the image coordinates into a geodetic system. The image coordinates are 
measured on relatively simple but accurate comparator-type machines, and the transformation 
is nowadays performed on any powerful computer. Virtually any image (taken by different 
cameras and arbitrarily rotated) can be processed in this way. For stereophotogrammetric 
analytical processing, it is advisable to use images with at least approximately parallel axes of 
view and sufficient overlap for the best possible stereoview. In this case it is not necessary to have 
signal points for detailed evaluation. For methods using the principle of intersection 
photogrammetry, it is again appropriate to use images with a suitable angle of intersection 
between the axes of the images (analogous to intersection from angles); detailed points must be 
naturally or artificially signalled.  

Analytical plotters use the design of a stereocomparator in conjunction with a computer. Work is 
carried out on the original images and transformation keys are calculated after the necessary 
image orientations. The evaluator controls the model coordinates from which the image 
coordinates are computed, to which the machine automatically adjusts under stereo vision 
conditions. At the same time, the geodetic coordinates of the scan points are calculated. 

Digital (present) methods 

Digital technology uses digital images. Spatial transformation is also used to convert the image 
coordinates into a geodetic system, which is solved on a computer. The image coordinates are 
measured directly on the screen. The simpler systems can make do with a conventional computer 
and a program; for stereo methods, the computer must be supplemented with hardware 
accessories to enable stereo vision. 

3. According to the recording of the output values of photogrammetric image processing, 
photogrammetric methods can be divided into: 

Graphical 

In graphical methods, the result of the image processing is directly marked graphically on a 
drawing table connected to the processing instrument (analogue or analytical plotters). Graphic 
methods of processing are relatively fast for an experienced evaluator, during the mapping 
process a cartographic original of the positional or even elevation component of the map is 
created directly. However, such output is nowadays out-of-date, because the result cannot be 
further processed directly by computer technology and cannot be reproduced or edited in good 
quality. Moreover, the result has only graphical accuracy (about ± 0.2 mm in the scale of the 
original). It is no longer used today. 

 



Numerical 

This basic method of evaluation today consists in automatically registering the coordinates of the 
individual points to be evaluated in the computer memory or on another data medium and 
processing them either directly or in another processing system into the final form. The results 
are in vector form (lines, points, polygons, surfaces, attributes) or in raster form. The advantage 
is their portability, storage, editing, etc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3  Theory of optical imaging 
3.1  Ideal projection 
 

The best approximation of central projection is the pinhole camera (camera obscura), the 
principle of which was known and used already during the Renaissance. Its use has not been 
widespread, mainly because of its very low luminosity. The pinhole camera does not contain a 
lens and, provided the aperture is small enough, it is a precise central projection. This means that 
the object and image angles are equal and the basic relations (3.1) hold (neglecting light bending). 
An idealised physical abstraction, the so-called "thin" lens, satisfies the same assumptions. 

 

 

Fig.3.1: Ideal central projection. 
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For further numerical solution we need to know the value of f (the so-called camera constant), 
which in the idealised case is equal to the perpendicular distance from the centre of the 
projection to the image plane. 
To a first approximation, the camera constant f can be set equal to the focal length of the ideal 
lens, and the position of the point H' from which the radial distance r' is measured can be taken 
as the intersection of the optical axis with the image plane. The scale of the image through the 
lens can be calculated, e.g., as: 
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3.2  Lens imaging 
 

In photographic imaging, the central projection is done optically. Optical projection would match 
geometric centre projection only when using a "pinhole lens".  

 
A real lens consists of several optical elements and its thickness is certainly not negligible. Each 
lens has a defined optical axis passing through the centre of the lens on which the centres of 
curvature of the individual lenses are supposed to lie (Figure 3.2). 

 

 

 

 

 

 

 

 

 

 

Fig.3.2: Thin lens imaging 

 

For an ideal lens, the lens equations that can be derived from the figure apply: 
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                                                                 (3.3) 

or its Newtonian form: 

𝑥 ⋅ 𝑥 ′ = 𝑓2, 𝑎 = (𝑥 + 𝑓), 𝑏 = (𝑥 ′ + 𝑓)                                 (3.4) 

where a is the object distance of the point, b is the image distance of the point, f is the focal length 
of the thin lens. 



 

 
Fig.3.3: Imaging with an ideal lens 

 

In the figure, f´ is the image focal length of the lens and f is the subject focal length. For compound 
lenses with a larger diameter, accurate centre projection is not performed. In geometric centre 
projection, the image of a point is again a point which is the intersection of the central projection 
ray with the projection plane. In optical projection, the image is formed by the rays emanating from 
point P in the object space striking the lens, and the projection is made by those which pass 
through the aperture, the image of which in the object space is the entrance pupil. The entire cone 
of ray bundles, the base of which is the entrance pupil and the apex of which is the projected point 
P, participates in the display. This cone corresponds to a cone in image space with its base in the 
exit pupil and its apex at point P´ (the image of point P). The position and size of the two pupils 
depend on the aperture used, hence the variable position of the projection centres. 
 

 

 

Fig.3.4: To define the centre of the exit pupil as the projection centre 



 
 

 

In photogrammetric practice, objects are usually so far away that the rays entering the lens can 
be considered parallel. In this case, the image plane is identical to the focal plane of the lens (b=f). 
However, even in this case, it is not an exact point representation due to so-called aberrations (i.e. 
deviations from the point representation - see below). Aberrations cause the beam entering the 
lens at an angle α exits the lens at an angle α´, which is slightly different from the angle of entry. 
In terms of photogrammetric calculations, a photogrammetric-mathematical projection centre1  
O´M, to which is related the camera constant, which is usually calculated together with the effect 
of radial distortion during lens calibration, is introduced for conventional lenses to minimize the 
α- α´ difference. 

 

 

Fig.3.5: Beam bundles- lens imaging 

 

Thus, the camera constant in photogrammetry is a fictitious value that is related to each lens and 
its distortion, given by the sum of its defects. This can be interpreted as a variation of the camera 
constant or the projected image angle that varies with r´. 

Further, in the above figures, O´ is the physical projection centre, O´M is the mathematical 
projection centre, H´ is the main imaging (autocollimation) point, the H-object is the main 
autocollimation ray, and r´ is the radial distance of the imaged point. 
 

 
1 K.Kraus, 1994, Photogrammetrie, Band I.,Dümmler/Bonn, ISBN 3-427-78645-5 
 



(3.5 ) 

 

where Δx´ , Δy´ are coordinate corrections for lens distortion (distortion). 

 

3.2.1  Depth of focusing 
 

Most surveying cameras in photogrammetry are focused at infinity and the objects in the images 
are sharp from a certain distance. The depth of field is determined by the size of the aperture used 
in the photography. The larger the aperture number, the greater the depth of field. The minimum 
distance of objects that will still be sharp in the image is given by the relationship: 
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where n is the aperture number and u is the dispersion ring ("blur or unsharpness"). It should not 
be larger than the diameter of the measuring mark used on the old photogrammetric plotters 
(0.02-0.05mm); A is the diameter of the input pupil. 

 

typ komory f [mm] n ymin (u=0.02mm) [m] 

Digital Canon Mark II D5 40 5.6, 8, 11, 16, 32 14.2,10, 7.2, 5, 2.5 

Analogue UMK 10/1318 100 8, 16, 32 63, 32, 16 

 

Tab. 3.1: Depth of focusing 

1.1 Summary of the effects on the geometry of the lens imaging 

The quality of the metric lens greatly influences the accuracy of the image coordinates. The use 
of any lens results in a violation of the ideal centre projection. Deviations of the actual display 
from the ideal are called optical defects or aberrations. Optical aberration can be divided into: 
(a) monochromatic (monochrome), 

(b) colour. 

 
Furthermore, aberration arising from: 

(c) point imaging (spherical aberration, astigmatism and coma), 

(d) object imaging (field blur and image distortion). 
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3.2.2  Spherical aberration 
This defect is caused by the fact that rays passing through the lens at different distances from the 
optical axis refract differently (Figure 3.6). They do not intersect at a single point but form a so-
called caustic surface around the optical axis - the point does not appear as a point but as a small 
scattering ring. The size of the defect is determined by the length of the segment FK, F. The spherical 
defect can be compensated for by a combination of a converging lens and concave lens. However, 
it cannot be completely eliminated. 

 

Fig.3.6: Lens imaging - spherical aberration 

3.2.3  Aspheric aberration (coma) 
If an oblique and wide beam of rays strikes the optical system, then a caustic with one plane of 
symmetry is formed instead of a point (Figure 3.7). This asymmetric aberration has a great effect 
on the image quality, especially in large systems. The coma is already evident at small distances 
of the points from the axis. For larger distances, coma is combined with astigmatism. 



 

Fig.3.7: Lens imaging - aspherical aberration 

 

3.2.4  Lens colour aberration 
This defect is caused by the different refractivity of rays of different wavelengths. Visible light is 
broken down into its coloured components, with red being the most refractive and blue the least. 
As a result of this defect, the image is not point-like, i.e. instead of a point we get scattered rings 
that are differently coloured at the edge. This defect in the lens can be compensated by 
composing the lens from several components (convergent and concave lens) using different 
types of glass that differ in refractive index (crown and flint glass), (Fig.3.8). 

In the visible light range, these defects can be successfully compensated for, but for the invisible 
optical range (UV and IR light) the lens-frame plane design must be modified for a sharp image. 

 

  



 
Fig.3.8: Lens imaging - chromatic (colour) aberration 

Chromatic aberration does not occur with mirror lenses. 

 

3.2.5 Astigmatism 

 
Astigmatism is an aberration of the optical lens whereby when a plane perpendicular to the 
optical axis is viewed, points in mutually perpendicular axes do not appear at the same distance. 
Astigmatism also causes a different image when the beam strikes the optical system 
perpendicularly or at an angle. 

 

3.2.6 Lens distortion 
The defects mentioned in the previous paragraphs only affect the quality of the display and only 
secondarily affect the accuracy of the measurement. Defects which affect the geometry of the 
image, and which therefore have a decisive influence on the accuracy of the measurement are 
called lens distortion. There are two distortions: 

 

- radial 

-tangential 
 

Lens distortion is caused by a combination of geometric inaccuracies in the manufacture of the 
lens. Today's lenses are asymmetrical, consisting of 8-30 elements that cannot be aligned 
absolutely precisely to the ideal optical axis. For this reason, the angle of the incoming beam is 
not exactly the same as that of the outgoing beam and the position of the imaged point differs 
slightly from the correct position. For precision work and for lenses with large distortion values, 
these defects must be corrected. Determination of the distortion is either carried out directly by 
the manufacturer (usually by measuring in eight radial directions) or can be determined by 
analytical methods (using a precisely defined point field). Modern photogrammetric software 
usually allows corrections to be introduced to minimise the effect of lens distortion, or it can 



calculate the distortion from an excessive number of measurements on the images. This gives the 
possibility to use, especially for close photogrammetry, also non-metric cameras where the lens 
distortion affects the measurement results very significantly. 

Radial distortion 

The displacement of a point of radial distance r' on an image by the value Dr´ is called radial 
distortion. Its course is usually not exactly rotationally symmetric, but we assume this symmetry 
when compensating for it. In modern photogrammetric metric lenses, it reaches values of 5-
10mm. Due to rotational symmetry, it is sufficient to determine the distortion in one radial 
direction. The distortion is usually expressed by a characteristic curve for each octant or curves 
of the same distortion - isolines - are constructed.  

Tangential distortion 

The second type of lens distortion is tangential distortion, which is caused by inaccurate 
centration of individual lenses. It acts perpendicular to the radial direction and causes irregular 
ill-defined local shifts. This distortion is virtually impossible to compensate for easily and is not 
commonly considered (the problem is that we would need to know the distortion values over the 
entire area and when removing the distortion, we would have to interpolate a correction in the 
area table for each measured point). With good modern lenses, it is reasonable to assume that 
the effect of tangential distortion is negligible. For metric lenses, the accuracy of the offset of the 
individual elements is usually so high (better than 5cc) that this assumption is justified. 

Historically, the effect of distortion has been eliminated by various methods, ranging from graphic 
corrections to compensating elements. Today, the effect of distortion is expressed analytically 
(Fig.3.9 and 3.10). 

 
 

Analytical methods for lens distortion suppression 

Due to the transition of almost all processing on the computer, the principle of corrections from 
distortion to measured values is used. It must be remembered that lenses, in order to be used at 
all for conventional close-range photogrammetry, must meet the requirement of at least 
approximately symmetrical radial distortion (i.e. tangential distortion will be minimal or zero). 
Only good quality lenses will meet this requirement (amateur cheap cameras are recommended 
for marginal use).  

The analytical method of suppressing the effect of radial distortion by expressing it as a 
polynomial is currently the most common. The course of the radial distortion is known from the 
manufacturer or is determined by laboratory measurement or by using calibration procedures 
directly during measurement and evaluation ("on field calibration"). The measurement involves 
measuring the image coordinates of individual discrete points whose position is known (the so-
called control points). The observed differences between the measurements and the control 
points are attributed to the effect of radial distortion. The measurement obtained is thus a set of 
points, which is interleaved with a suitable function that best represents the set of points. For 
example, a simple polynomial function can be used: 
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In general, the effect of radial distortion can be expressed by a polynomial, e.g.: 
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The forms used are expressed as: 
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This form is too detailed, for most lenses only the coefficients a1, a2 can be used. 

The RolleiMetric system uses, for example, this correction: 
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r´0 is the radial distance, where the radial distortion r´ is still (off-centre) equal to zero (its 
sinusoidal shape is common). 

 

 

 

Fig.3.9: Lens imaging - radial distortion (RolleiMetric 6006, 40mm lens) 

 



 

Fig.3.10: Lens imaging - radial distortion expressed by isolines 

 
 
 

3.2.7  Dimensional shrinkage of photographic material 
 

The dimensional stability of the material on which the image is recorded is a decisive factor in 
photogrammetric measurements. It is particularly influenced by the substrate on which the light-
sensitive medium is deposited. Glass plates are the most dimensionally stable, followed by film 
and finally paper. In photogrammetry, only digital recording on a silicon semiconductor chip, 
which has the properties of high-quality glass, is currently used. Previously, for almost 100 years, 
conventional film was used as a carrier for the sensitive layer. In terrestrial photogrammetry, film 
materials were no longer used after the turn of the millennium, in aerial photogrammetry about 
10 years later for technical reasons. Film had several advantages: it was lightweight, flexible, 
easier to develop than glass plates, and less costly. However, it showed dimensional shrinkage. 
For reference glass has a dimensional shrinkage of 3-5 µm, modern PET based films up to 5 µm. 
However, historical analogue film materials showed significantly more deformation. 

The shrinkage of photographic material is divided into: 

(a) regular over the entire image area - this shrinkage is very easy to detect by comparing known 
lengths 

b) differential - this is a regular shrinkage which is different in the x' and y' axis directions 

c) irregular - this shrinkage is practically impossible to exclude without a special device (réseau - 
grid).   

 The shrinkage of photographic film material is currently negligible, but it must be considered, for 
example, when evaluating older (archival) images or images from non-measurement cameras. If 



the shrinkage is regular, it is very easy to exclude it by comparing it with the actual coordinates of 
the fiducial marks. The correction is made by an affine transformation or, if the scale change for 
both axes is the same, a similarity transformation is used, or a regular shrinkage is corrected by a 
small change in the camera constant. If it happens that the shrinkage is different in the two axes 
(e.g. by stretching the material in one direction when rewinding the film), it can be further 
supported e.g. as additional parameters in the alignment (different scale for each axis) or in other 
ways, e.g. by DLT (direct linear transformation). Irregular shrinkage is difficult to remove; if the 
camera is equipped with a set of additional markers (réseau camera), it can again be captured by 
a transformation, e.g. Helmert. 

 

A change in the position of a point on the image can also be caused by the unevenness of the 
image, which is caused by the deflection of the glass, or in the case of film, by imperfect alignment 
during taking the picture. The sagging of the sensitive layer causes a local change in the scale of 
the image or a change in the projection distance. The flatness of glass plates or PET film is 5-20µm. 
This error cannot be routinely eliminated.  

 

3.2.8  Cumulative effect of refraction and curvature of the Earth 
The radial displacements of objects in the image caused by the curvature of the Earth are 
determined by the choice of the coordinate (Cartesian) system in the selected projection plane. 
However, the image is taken over a real body that can be approximated by a rotating ellipsoid or a 
reference sphere. Due to the distances involved in terrestrial photogrammetry and its accuracy, 
the influence of the curvature of the Earth does not need to be considered. The effect of the 
curvature of the Earth is partly compensated by the error from refraction, since the two effects 
work against each other. However, for aerial photogrammetry, these effects must be considered 
and the well-known equations from classical geodesy can be used after modification. 

 

3.2.9  Photogrammetric projection 
 

Assuming an ideal lens, the photographic image is an accurate central projection of the object 
being photographed. Each point of the object to be photographed corresponds to a point in the 
image plane. The rays passing between the corresponding points (the point and its image) 
intersect at a single point - the centre of projection (projection centre O). 

However, the practical design of lenses differs substantially from the physical idealization, which 
creates problems in solving practical photogrammetry tasks. One of the goals of photogrammetry 
is to transform the central projection into an orthogonal (parallel) projection as required by the 
map projection. To solve this task, it is necessary to define precisely the basic elements of the 
central projection - i.e. the projection centre. Its definition, together with other parameters, forms 
the so-called elements of the internal orientation of the metric camera. It is the precise knowledge 
of these elements that is the outstanding feature of the metric camera. The prospective central 
projection of an object can be derived using the principles of descriptive geometry and is shown 
in Figures 3.11 and 3.12. 



 

Fig.3.11: Central projection 

 

 

Fig.3.12: Photographic image. The vanishing point of the vertical object lines is the image nadir. 



 

3.2.9 Elements of internal orientation 
The distance of the objects to be imaged is usually so great that their images are formed on the 
back focal plane of the lens, and the image distance is thus practically equal to the focal length 
of the lens. For this reason, classical photogrammetric cameras were permanently focused on 
infinity, resulting in a simpler camera design and preserving the internal orientation of the camera. 
When cameras are equipped with the ability to refocus, this is done after certain precise steps to 
which the increment of the camera constant is known. Not suitable are zoom lenses, where the 
camera constant cannot be defined precisely and in advance (except for the extreme positions). 
Special calibration procedures must be used for such lenses. 

 
The entrance or exit pupil of a lens is the aperture image of the lens, formed by the object or image 
part of the lens; practically it always lies inside the lens. According to the preceding text, the 
projection centre (object centre of projection) is not a single point. The practical definition of a 
projection centre is different - projection centres are a mathematical abstraction. Since in 
photogrammetry the relationship between the image coordinates i and the object rays is involved, 
it is necessary to define projection centres based on this relationship. Projection centres defined 
as the centres of the input and output pupils, with respect to the distortion of the lens or 
mathematical projection centre, satisfy this requirement. 

 
The coordinates of the main image point and the camera constant are called the elements of the 
internal orientation of the metric camera and define the geometry of the rays inside the camera. 
Knowledge of the radial distortion is often added to the internal orientation elements. 

 

 

Fig. 3.13. Definition of the elements of the internal orientation in the general configuration (image 
coordinates x ´, y ´); The axis of view is the perpendicular to the image plane passing through the 
object projection center. 



 

Principal (image) point 

The principal image point H´ is defined as the intersection of the image plane with the ray 
passing through the centre of projection in the object space and which is perpendicular to the 
image plane. 

Camera constant 

The camera constant f is the distance from the main image point H´ to the centre of projection 
in the object space (centre of the exit pupil). The camera constant is usually denoted by f or c (for 
the positive under consideration) or -f or -c for the negative (see Figure 3.14). The marking f or -f is 
a matter of defining the origin and direction of the axes and need not be completely uniform. 
Usually, the origin is the centre of projection; since we often give the forward direction as positive, 
it is logical that from the centre of projection back (to the image plane of the negative) it is negative 
(i.e., -f). Furthermore, the value of f only corresponds approximately to the focal length of the lens, 
as already mentioned. In optics, and in many mathematical calculations, f is usually positive, 
since only its magnitude is considered. 

 

 

Fig.3.14. Camera constant, negative and positive, terrestrial configuration Elements of interior 
orientation : x0 ´,y0 ´, f (and known parameters of distortion) 

 

Centre of photo 

 
Classical photogrammetry used analogue images taken with special analogue photogrammetric 
cameras. As the main image point was difficult to define in practice, frame marks were introduced 
in the measuring chambers, the intersection of which indicated the centre of the image M´, from 
which the image coordinates were determined. Ideally, the image point should lie at the 
intersection of the fiducial marks. However, due to the technical design of the camera and the 
lens, the position of the principal point is deviated by a small amount from the centre of the frame 
given by the fiducial marks (fig. 3.15). This value was then determined by measurement or 



laboratory procedures and is usually known to a high accuracy (about 0.01 mm) for measurement 
cameras. The position of the centre of photo H´, measured from the image centre M´, is given in 
coordinates [x'0, y'0] (or [dx', dy'] ) for aerial photogrammetry or as [x'0, z'0] (or [dx', dz'] ) traditionally 
for terrestrial photogrammetry. 

 
Fiducial marks are stable optical or mechanical structures and their image is transferred to the 
negative during exposure. For terrestrial photogrammetry, a system of four frame marks at the 
centres of the sides of the format in use was commonly used, while for aerial photogrammetry, 
eight frame marks were used at the corners and centres of the sides of the format. In special 
réseau cameras there is a planparallel plate in the image plane with a system of crosses (up to 
121), which are used to define the frame coordinate system and to remove the effect of 
deformation of the film material.  

 
The position of the frame marks is always clearly defined and their coordinates, together with the 
elements of the internal orientation, are usually included in the certificate issued for the 
measuring chamber. 

Currently, only high-quality digital SLR cameras are used for terrestrial photogrammetry. Special 
and expensive digital cameras were developed for aerial photography after new Millenium, but 
their mass implementation was only after 2010. In general, digital cameras do not have fiducial 
marks, corner pixels are used, otherwise the same principles as for conventional film cameras 
apply. 

 

 

 

 

Fig. 3.15. Different types of fiducial marks (on historical images or in historical  cameras only) 

 

 

 

 

 

 

 

 



 

4  Mathematical fundamentals 
4.1 Image orientations 
 

The relations describing the geometry of the ray tracing inside the camera describe the elements 
of the interior orientation, the position of the camera in space and the direction of the view are 
described by the elements of the exterior orientation. Knowing and restoring or adjusting them 
allows a correct evaluation of the image content. The procedures that lead to the creation of the 
model are called image orientations. 

Interior orientation 

For a good evaluation of photographic measurement images, it is necessary to know and recover 
the elements of the interior orientation of the metric camera (the camera constant f, the position 
of the principal point H´(dx´,dy´) and possibly the form of the radial distortion). These quantities 
are usually known in advance (they are specified by the manufacturer for each measuring camera 
or can be determined by laboratory measurement). Images for which the elements of the internal 
orientation are known are referred to as metric images. 

Exterior orientation 

The elements of the exterior orientation are defined for each image (coordinates of the centre of 
the input pupil X0, Y0, Z0, then inclinations ,,). 

 
For terrestrial photogrammetry in its classical version, the determination of the elements of the 
exterior orientation was relatively simple. The coordinates of the centre of the input pupil X0, Y0, Z0 
can be determined by any geodetic method. In classical analogue stereo-methods, the left 
position was usually geodetically located. For analogue special photogrammetric cameras, the 
inclinations ,, could be set with sufficient accuracy by means of the orientation equipment 
and levelling devices, i.e., the elements of the exterior orientation were standardised, and the 
calculations were greatly simplified, since the elements of the exterior and interior orientation 
were known in advance. 



 

Fig. 4.1 Internal and external orientation elements for terrestrial and aerial photogrammetry 

If we do not know the elements of the exterior orientation, they can be calculated classically in 
two steps as: 

- relative orientation (relative orientation between the two stereo images, creating an arbitrary 
spatially oriented stereo model) 

- absolute orientation (rotation and shifting of the model into the geodetic reference system) 

Newer systems allow external orientation to be performed in a single step, using a direct 
relationship between image coordinates and geodetic coordinates using the bundle adjustment 
method (Bundle Adjustment, German: Bündelausgleichung) 

 

 

 

 

 

 

 

 

 

 

 



4.2 Coordinate systems 

 

Fig. 4.2: Coordinate systems in photogrammetry 

To understand the following text, it is necessary to define the coordinate systems used and the 
transformation procedures used in photogrammetry, which are referred to in the following text. 
Without perfect knowledge of these relationships and symbology, understanding the following 
text is difficult. Historically, slightly different symbology has been used for coordinate systems for 
terrestrial and aerial photogrammetry, although mathematically they are only one system. Much 
of the foreign literature does not make differences between terrestrial and aerial coordinate 
systems, uses the same symbolism, and does not use other coordinate systems. However, in 
general, two types of coordinate systems were (or still are) used in photogrammetry: 
 

1) main coordinate systems  (used) 



• Image coordinate system:  x , y , (z = -f)  

• Model coordinate system:  x, y, z 

• Geodetical system:   X, Y, Z 

• auxiliary coordinate systems (these are defined for easier coordinate 

transformations in the past) 

• Fictional image coordinate system: xF, yF, zF  

• Exact vertical image coordinate system: xS, yS, zS  

 

4.2.1 Choice of coordinate systems in aerial photogrammetry 

In defining model systems and deriving other relationships, we will follow the recommendations 
of the International Society for Photogrammetry and Remote Sensing (ISPRS), which is based on 
the principles of aerial photogrammetry: 

 
-the x-axis is placed approximately in the direction of flight 
-the direction of rotation is selected in a clockwise direction 
-the x-axis is primary, the y-axis secondary and the z-axis tertiary 
-the origin of the coordinate system is located at the projection of the left position of the 
stereo pair  
 

 

Fig. 4.3: Coordinate systems in aerial photogrammetry, direct transformation 
 
 



4.2.1 Coordinate system definition in terrestrial photogrammetry 
For the spatial processing of image content, terrestrial photogrammetry uses the same system as 
aerial photogrammetry, the (x,y) axes are the semi-major axes and the (z) axis is the vertical axis. 
While in aerial photogrammetry the spatial component is (z), in terrestrial photogrammetry it is 
used as the spatial component (y) (distance to the subject). 
 
 

 

Fig. 4.4: Coordinate systems in terrestrial photogrammetry 

 

It's up to agreement on what we call the coordinates. Traditionally, in Central Europe and in the 
historical literature, a distinction is made between terrestrial and aerial photogrammetry, 
although mathematically terrestrial photogrammetry is only a special case of the more general 
one, aerial photogrammetry. The modern world literature, mainly because of the same methods 
of evaluation of digital technology, has erased these differences and the spatial coordinate (z) is 
always in the direction of photography; in terrestrial photogrammetry, a transformation (y¬®z) 
must be made in the results. Another reason is the use of réseau cameras, which take both 
terrestrial and aerial images, and the introduction of both analytical and digital methods, where 
oblique images from an aircraft, helicopter, drone, platform or even from a tall building can also 
be processed (in this case neither vertical nor "classically" ground-based images are involved). 
 

 



 

 

Fig.4.5: Classic terrestrial, aerial and oblique image 

 

4.2.2 Image coordinate system 
marking x , y , (z = -f) (left image) or x, y , (z = -f)  (right image) or in the traditional concept x , 
z , (y = -f) (left image) or x, z , (y = -f)  (right image) 

The image coordinates are defined as follows: the origin of the coordinate system (i.e., where the 
measurement is taken from on the image) is located, in terms of the measurement, at the centre 
of the image M´, which is given by the line of frame marks on the image (hence we speak of the 
image coordinates). However, the image coordinates must be measured from the principal point 
H¢. Thus, if H´= M´, corrections for the offset of the origin of the coordinate system must be 
introduced (H´ has coordinates x0 ,y0 or dx, dy, or x0 ,z0 or dx, dz).  The x' axis is placed between 
the horizontal fiducial marks, the y' (or z') axis lies perpendicular to the x' axis in the frame plane 
in the mathematical sense; the system is usually supplemented for mathematical reasons by a z' 
(or y') axis with a positive forward orientation in the object space (valid : z = -f, or y = -f).  

Note: The object centre of projection is the correct mathematical origin of the 3D system with 
frame coordinates [0,0,0]. Its perpendicular projection to the image plane is H´. For practical 
purposes, the intersection of the fiducial marks M´ (these are 2D coordinates on the image) is 
considered the origin of the planar image coordinates. Since often H´≠ M´, measured frame 
coordinates with origin at M´ need to be corrected from this offset. 

When digital images are used, M´ is defined as the intersection of the corner pixels. 
 

Remarks: 

thus, there can sometimes be double naming, especially of image coordinates - for example, in 
historical procedures and literature, using old comparators where image coordinates were 
measured from terrestrial images like x ',z' . For newer universal comparators, the naming of the 
same coordinates is x',y'. Since virtually all mathematical derivations are performed for an aerial 
photogrammetry system, we will mainly follow this newer approach when appropriate. 



Thus, the resulting form of the image coordinates for a general point P will be:  

 

𝒙 = [
𝑥 ′

𝑦 ′

−𝑓
] = [

𝑥𝑃
′ − 𝑥𝑜

′ + 𝛥𝑥 ′

𝑦𝑃
′ − 𝑦𝑜

′ + 𝛥𝑦 ′

−𝑓

]                                                                                                           (4.3) 

where x´p, y´p are measered image coordinates,  x´o, y´o are the coordinates of the principal 
image point and Δx´,Δy´ are the lens distortion corrections. 
 
 

4.2.3 Model coordinate system 

markings: x , y , z 

The system of model coordinates. The axes and their direction and orientation are chosen 
according to the ISPRS recommendations or approximately in accordance with the resulting 
geodetic coordinate system. The coordinates x0, y0, z0 are the model coordinates of the centre of 
the projection of the left image (input pupil). 

4.2.4 Geodetic system 
marking: X , Y , Z 

The resulting coordinate system of the object, the geodetic system. The coordinates X0,Y0,Z0 are 
the geodetic coordinates of the centre of projection of the left image (input pupil). 
 
 

4.2.5 Fictitious image system 

marking: xF , yF , zF (left frame) or xF , yF , zF  (right frame) 

A fictitious vertical image system where each point also corresponds to a different image distance 
zF generated from the general image. It serves as an auxiliary system when converting from an 
image coordinate system.  

4.2.6 Exactly vertical image system 
Marking: xS , yS , zS (left image), or xS , yS , zS  (right image) 

A system of exactly vertical images where all points have the same image distance equal to the 
camera constant f ( valid : zS = -f). This system is used in the older coordinate system conversion 
procedure for aerial photogrammetry. 
 

 

 

4.3 Determination of the effect of changing exterior orientation 
elements on image coordinates 
 



This part is the basis of the mathematical approach to generally acquired images. Already a 
century ago the following relations were derived by Otto von Gruber. The result is series that 
describe with some degree of accuracy the influence of the elements of exterior orientation on 
the image coordinates, the so-called Gruber series. 

These are the effect of rotations on the image coordinates and the effect of translations. Gruber 
series have become an important mathematical relation in photogrammetry for a long time, so 
they will be derived here. 

 

 

4.3.1 Rotation matrix 
 

In photogrammetry, transformation relationships between systems are used. The basis of modern 
spatial photogrammetry are direct relationships between image and geodetic coordinates. When 
they are converted to each other, they are generally rotated, shifted and scaled. While shift and 
scale change are relatively simple operations, spatial rotation is more complex and is the basis 
for further considerations. 

4.3.2 Rotation in the plane 
Plane transformations have already been introduced in geodesy; in the following, relations 
concerning the rotation of one coordinate system with respect to another will be derived.  
To understand the relations, we start from a two-dimensional idea that is commonly well known. 
Classical geodesy commonly uses transformation relations between Cartesian systems in the 
plane. The simplest is the ordinary (identity) transformation: 
 
                                                

 

𝑋 = 𝑥 ∙ cos 𝛼 − 𝑦 ∙ sin 𝛼                                                      (4.4) 

                   𝑌 = 𝑥 ∙ sin 𝛼 + 𝑦 ∙ cos 𝛼 

 

 

𝑿 = 𝑹 ⋅ 𝒙. , 𝑹𝑇 = (
𝑟11 𝑟12

𝑟21 𝑟22
)                                                  (4.5) 

Where R is called the rotation matrix of the system. This matrix has a few distinguishing 
properties; it is orthogonal and orthonormal. 

 

4.3.3 Rotation in space 
Effect of rotation on all image coordinates 

The total rotation matrix consists of the cumulative effect of three independent rotations, which 
we call ,,.. By defining the axes and the order of rotations in deriving the spatial rotation matrix, 



we obtain the resulting expression of the matrix elements that would differ if the order were 
changed.  

Three orthogonalization and three orthonormalization conditions are defined. Thus, the resulting 
matrix R contains a total of three independent optional parameters, which are just the rotations 
,,. 
 

 

Fig.4.6: ,, (primary, secondary and tertiary rotation) 

 
 

 

4.3.4 Rotation about the primary x´ axis 
Consider a frame coordinate system that is tilted by an angle  compared to the fictitious system. 
According to Figure 4.7, we can write: 

 

                                                                      

 = 

 =   −  

 =   +  

x x

y y z

z y z

F

F

F

cos sin

sin cos

 

 

                                                (4.8) 

or use a more elegant matrix form: 

 

 

 

(

𝑥𝐹
′

𝑦𝐹
′

𝑧𝐹
′

) = (
1 0 0
0 𝑐𝑜𝑠 𝜔 − 𝑠𝑖𝑛 𝜔
0 𝑠𝑖𝑛 𝜔 𝑐𝑜𝑠 𝜔

) ⋅ (
𝑥 ′

𝑦 ′

𝑧 ′

) = 𝒙𝑭
′ = 𝑹𝜔 ⋅ 𝒙′                                          (4.9) 

 



 

 

Fig. 4.7: Rotation of the system about the x´ axis by the angle  

4.3.5 Rotation about the secondary y´ axis 
According to Fig. 4.8, for rotation about the y´axis by an angle , we can write: 

 

  (4.10) 
 
 

 or use a more elegant matrix form: 

 

                    (4.11) 

 

 

 

Fig.4.8: Rotation of the system about the axis y´ by the angle  

𝑥𝐹
′ = 𝑥′ ⋅ cos 𝜙 + 𝑧′ ⋅ sin 𝜙 

𝑦𝐹
′ = 𝑦′ 

𝑧𝐹
′ = −𝑥′ ⋅ sin 𝜙 + 𝑧′ ⋅ cos 𝜙 

(

𝑥𝐹
′

𝑦𝐹
′

𝑧𝐹
′

) = (
cos 𝜙 0 sin 𝜙

0 1 0
− sin 𝜙 0 cos 𝜙

) ⋅ (
𝑥′

𝑦′

𝑧′

) = 𝒙𝑭
′ = 𝑹𝜙 ⋅ 𝒙′ 



 

4.3.6 Rotation about the tertiary z´ axis 

The last rotation is the rotation about the z´ axis by the angle k; according to Fig. 5.4 we can write: 
 
 
                                                                                                                                                                         (4.12) 

 

                                

or use a more elegant matrix form: 

 

 

             (4.13) 

 

Fig.4.9: Rotation of the system around the z' axis by the angle  

 
 

 
4.3.7 Resulting rotation matrix R 

The resulting matrix R is given by the multiplication of the partial rotation matrices: 

 

 

R R R  =                                                        (4.14) 

 

1 0 0

0

0

cos sin

sin cos

 

 

−
















  

cos sin

sin cos

 

 

0

0 1 0

0−

















= 

cos sin

sin sin cos sin cos

cos sin sin cos cos

 

    

    

0

−

−

















 

(4.15) 

 

𝑥𝐹
′ = 𝑥′ ⋅ cos 𝜅 − 𝑦′ ⋅ sin 𝜅 

𝑦𝐹
′ = 𝑥′ ⋅ sin 𝜅 + 𝑦′ ⋅ cos 𝜅 

𝑧𝐹
′ = 𝑧′ 

(

𝑥𝐹
′

𝑦𝐹
′

𝑧𝐹
′

) = (
cos 𝜅 − sin 𝜅 0
sin 𝜅 cos 𝜅 0

0 0 1
) ⋅ (

𝑥′

𝑦′

𝑧′

) = 𝒙𝑭
′ = 𝑹𝜅 ⋅ 𝒙′ 



The total resulting rotation matrix will be: 

 

 

                                                                    R R R  =                                             (4.16) 

 

cos sin

sin sin cos sin cos

cos sin sin cos cos

 

    

    

0

−

−


















cos sin

sin cos

 

 

−














=

0

0

0 0 1

                                (4.17) 

 

 𝑹𝜔𝜙𝜅 =

   (

𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜅 − 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜅 𝑠𝑖𝑛 𝜙
𝑠𝑖𝑛 𝜔 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜅 + 𝑐𝑜𝑠 𝜔 𝑠𝑖𝑛 𝜅 − 𝑠𝑖𝑛 𝜔 𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝜅 + 𝑐𝑜𝑠 𝜔 𝑐𝑜𝑠 𝜅 − 𝑠𝑖𝑛 𝜔 𝑐𝑜𝑠 𝜙

− 𝑐𝑜𝑠 𝜔 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜅 + 𝑠𝑖𝑛 𝜔 𝑠𝑖𝑛 𝜅 𝑐𝑜𝑠 𝜔 𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝜅 + 𝑠𝑖𝑛 𝜔 𝑐𝑜𝑠 𝜅 𝑐𝑜𝑠 𝜔 𝑐𝑜𝑠 𝜙
)  

          (4.18)   

V symbolickém zápisu: 

R =

















r r r

r r r

r r r

11 12 13

21 22 23

31 32 33

                                                                (4.19)  

 

Therefore, the following relations are applicable: 
 

                                                     























= 





 = −





















 = −

















= 























x

y

z

x

y

z f

x

y

z f

x

y

z

F

F

F

T

F

F

F

R

R

,

                                                 (4.20)           

 
Mathematical Note: 

 

 

 
Note here that r13 = sin  > 0 in the 1st and 2nd quadrants and further that r13 = sin < 0 in the 3rd 
and 4th quadrants. Thus, the rotation of j is not uniquely determined. The quadrants of the other 
two rotations w,k are uniquely determined given the expressions from which we compute them. 
Thus, we get two sets of rotations ,, to a single rotation matrix R. Apart from these 
problems, a numerical problem may arise, namely in the case that cos = 0 ( =100g or 300g). 

tan 𝜔 = −
𝑟23

𝑟33
, sin 𝜙 = 𝑟13, tan 𝜅 = −

𝑟12

𝑟11
 



However, this angle cannot practically occur in photogrammetry (except perhaps in a vertical fall 
of the aircraft). 

 
 

4.4 Translation - shift in space 
If we detect changes in the image coordinates, besides the rotation of the image system, there is 
also the shift of the system in space. This is easier to describe. 

 

4.4.1 Effect of changing the x-coordinate 
For a small shift of the image in the x-axis direction, Figure 4.10 applies: 

x
z

z
x

h

f
x=


 =               (4.23) 

 

where h is the flight altitude (constant in this case) and f is the camera constant, or we express 
this relation directly for the image coordinates and we differentiate this expression for all image 
coordinates: 

 =x
f

h
x                                                             (4.24) 

     =   =  = =x
f

h
x y z f, ,0 0                                (4.25) 

 

Fig.4.10 Effect of changing the x-coordinate 

In this case, f/h is the scale of the image. Changes of x, y, z in the scale of the image are often 
referred to traditionally as dbx , dby , dbz , because of the same meaning on old analogue 
machines. The expression goes to the shape: 



 

    =  =  = =x db y z fx , ,0 0                               (4.26) 

 

Effect of y-coordinate change (same as for x-coordinate) 

The translation in the y-axis direction is derived in the same way as for the x-coordinate: 

    =  =  = =x y
f

h
y z f0 0, ,                               (4.27) 

    =  =  = =x y db z fy0 0, ,                               (4.28) 

 

The effect of changing the z coordinate  

However, when the flight altitude changes, there are changes in both image coordinates. 

 

 

Fig.4.11: Effect of change of flight altitude on image coordinates 

 

𝑥 =
𝑧

𝑧 ′
𝑥 ′ =

ℎ

𝑓
𝑥 ′, 𝑦 =

𝑧

𝑧 ′
𝑦 ′ =

ℎ

𝑓
𝑦 ′                             (4.29) 

     𝑥 ′ =
𝑓

ℎ
𝑥,          𝑦′ =

𝑓

ℎ
𝑦                                      (4.30) 

𝑥 ′̅ =
𝑓

ℎ+𝑧
𝑥,          𝑦′̅̅̅̅ =

𝑓

ℎ+𝑧
𝑦                                 (4.31) 

 

If we subtract the equations (4.30) and (4.31), we get after modification based on relations: 

1 1
1

a x a

x

a












 

expression for differences in frame coordinates: 



z
h

y
yyyz

h

x
xxx 


=−=


=−= ,                   (4.32) 

We modify the expressions by inserting: 

and we get the final form: 

    =


 =


 = =x
x

f
db y

y

f
db z fz z, , 0                    (4.33) 

 

4.5 Scale change 
Scaling is a simple mathematical operation. If the change of scale m is the same for all axes, the 
relationship is trivial: 

X

Y

Z

m

x

y

z
















= 

















                                                (4.34) 

 

If the scale on the axes is not the same, the notation will be more complicated: 

X

Y

Z

x

y

z

kde

m

m

m

X

Y

Z
















= 

















=

















M M,

0 0

0 0

0 0

                  (4.35) 

 

Non-identical scaling numbers were used, for example, in roll film shrinkage, where the film 
shrunk more in the direction of the roll. However, non-equal axis scales (but the changes are 
small) can also be present in modern measurements, e.g. GNSS. 

 

4.6 Relations between coordinate systems 
The historical derivation is given here first. 

 

 

The method of transforming image coordinates to geodetic coordinates is given in symbolic 
notation: 

x , y , z     →     xF, yF, zF         →        x , y , z      →      X , Y , Z 

 

It is a display from one system to another. It is necessary to define the matrix of the display, which 
is the rotation matrix (see below). The transformation procedure starts by converting the image 

f

h
zz =



coordinates into fictitious (three-dimensional) coordinates 
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11 12 13

21 22 23

31 32 33
                       (4.36) 

 

The matrix R is orthogonal, R-1 = RT. Furthermore, the similarity holds: 
 




=




=



−
=

−

−




=




=
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S

S0

0

0
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,                    (4.37) 

Substituting from (4.36) into (4.37) we obtain a collinear relation: 

 

 = −
 +  −

 +  −
 = −

 +  −

 +  −
x f

r x r y r f

r x r y r f
y f

r x r y r f

r x r y r f
s s

11 12 13

31 32 33

11 12 13

31 32 33

,                     (4.38) 

Next, similar to (4.38), we can use the relations (4.37) to express the model coordinates: 
 

𝑥 = 𝑥0 + (𝑧 − 𝑧0)
𝑟11(𝑥 ′ − 𝑥0

′ ) + 𝑟12(𝑦 ′ − 𝑦0
′ ) − 𝑟13𝑓

𝑟31(𝑥 ′ − 𝑥0
′ ) + 𝑟32(𝑦 ′ − 𝑦0

′ ) − 𝑟33𝑓
 

𝑦 = 𝑦0 + (𝑧 − 𝑧0)
𝑟21(𝑥′−𝑥0

′ )+𝑟22(𝑦′−𝑦0
′ )−𝑟23𝑓

𝑟31(𝑥′−𝑥0
′ )+𝑟32(𝑦′−𝑦0

′ )−𝑟33𝑓
                                 

(4.39) 

or inverse frame coordinates (this form is more common because we can advantageously 

assign corrections to image coordinates and linearize the relation): 

 

𝑥 ′ = 𝑥0
′ − 𝑓

𝑟11(𝑥 − 𝑥0) + 𝑟21(𝑦 − 𝑦0) + 𝑟31(𝑧 − 𝑧0)

𝑟13(𝑥 − 𝑥0) + 𝑟23(𝑦 − 𝑦0) + 𝑟33(𝑧 − 𝑧0)
 

𝑦 ′ = 𝑦0
′ − 𝑓

𝑟12(𝑥−𝑥0)+𝑟22(𝑦−𝑦0)+𝑟32(𝑧−𝑧0)

𝑟13(𝑥−𝑥0)+𝑟23(𝑦−𝑦0)+𝑟33(𝑧−𝑧0)
                                  (4.40) 

 

 



4.6.1 Direct relationship between image and geodetic coordinates 
Another - modern - possibility is to derive a direct relationship between image coordinates and 
geodetic coordinates. The model coordinate system is in a collinear relationship with the image 
coordinate system as follows: 
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,                                  (4.41) 

The model coordinate system can be converted to a geodetic system by rotation about three axes: 
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                    (4.42) 

 

By substituting from (4.42) into (4.41) we obtain a direct relationship between image and 
geodetic coordinates, which is the basis of all modern photogrammetry: 
 
 

𝑥 ′ = 𝑥0
′ − 𝑓

𝑟11(𝑋 − 𝑋0) + 𝑟21(𝑌 − 𝑌0) + 𝑟31(𝑍 − 𝑍0)

𝑟13(𝑋 − 𝑋0) + 𝑟23(𝑌 − 𝑌0) + 𝑟33(𝑍 − 𝑍0)
 

𝑦 ′ = 𝑦0
′ − 𝑓

𝑟12(𝑋−𝑋0)+𝑟22(𝑌−𝑌0)+𝑟32(𝑍−𝑍0)

𝑟13(𝑋−𝑋0)+𝑟23(𝑌−𝑌0)+𝑟33(𝑍−𝑍0)
                                      (4.43) 

 

Similarly, we arrive at the same result by considering a general transformation from classical 

geodesy. From the image coordinate system (omitting the correction for lens distortion, which is 

introduced directly in the measurement of image coordinates) we get to the geodetic system by rotating, 

scaling, and shifting the image coordinates (rotation, scaling, and translation): 

 

[
𝑋
𝑌
𝑍

] = [

𝑋𝑜

𝑌𝑜

𝑍𝑜

] + 𝑚 ⋅ 𝑅 ⋅ [

𝑥 ′ − 𝑥𝑜
′

𝑦 ′ − 𝑦𝑜
′

−𝑓

]                                                   (4.44) 

where R is the rotation matrix, m is the scale number, [

𝑋𝑜

𝑌𝑜

𝑍𝑜

] represents the shift from the origin of 

the geodetic system to the position of the input pupil. 

 

 



 

[
𝑋
𝑌
𝑍

] = [

𝑋𝑜

𝑌𝑜

𝑍𝑜

] + 𝑚 ⋅ [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

] ⋅ [

𝑥 ′ − 𝑥𝑜
′

𝑦 ′ − 𝑦𝑜
′

−𝑓

]                                            (4.45) 

 

𝑋 = 𝑋𝑜 + 𝑚 ⋅ (𝑟11 ⋅ (𝑥 ′ − 𝑥𝑜
′ ) + 𝑟12 ⋅ (𝑦 ′ − 𝑦 ′) − 𝑟13 ⋅ 𝑓) 

𝑌 = 𝑌𝑜 + 𝑚 ⋅ (𝑟21 ⋅ (𝑥 ′ − 𝑥𝑜
′ ) + 𝑟22 ⋅ (𝑦 ′ − 𝑦 ′) − 𝑟23 ⋅ 𝑓) 

      𝑍 = 𝑍𝑜 + 𝑚 ⋅ (𝑟31 ⋅ (𝑥 ′ − 𝑥𝑜
′ ) + 𝑟32 ⋅ (𝑦 ′ − 𝑦 ′) − 𝑟33 ⋅ 𝑓)                                                    (4.46) 

 

From the third equation in (4.46), we express the scale m and plug it into the first and second 

equations: 

 

                     (4.47) 

 

By inverting the relation, we obtain equation (4.43). 

 
 

4.7 Photogrammetric series 
Photogrammetric series belong to the theoretical foundations of photogrammetry and are the 
basis of many other derivations, so they should be given due attention.  
 

 
Working with the complex rotation matrix has been difficult in the past. Therefore, ways were 
sought to simplify the calculations, but still be accurate enough. The way was to linearize the 
rotation matrix and simplify it under certain prerequisites. 
 

 

 

Definition: photogrammetric series are expressions which, with a degree of precision given 
by the linearization of a complete relation, express the effect of elements of exterior 
orientation on image coordinates. 
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Photogrammetric series are intended to define the influence of the elements of exterior 
orientation on the image coordinates - i.e. the influence of rotation and translation. Translation is 
inherently a linear relationship, so it is necessary to linearize the apparently nonlinear rotation 
matrix. The rotation matrix (4.22) contains the sums and products of the goniometric functions. 
Assuming (which is commonly met in photogrammetric imaging) that the angles of rotation are 
sufficiently small (within 2°-3°), the following simplification can be used: 

cos () 1   and   sin ()  d 

Once this is achieved, we find that differentially small angles allow us to construct a simplified 
spatial rotation matrix R: 
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                 (4.48) 

 
 
 
There are several ways to derive photogrammetric series. Here is the simplest one. 
The basis is the collinear relationship between the coordinates of the exact vertical image and the 
fictitious three-dimensional image coordinates. These fictitious image coordinates are replaced 
by the real measured image coordinates (there are only two of them, plus the camera constant) 
according to the following relations: 
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,                                                                (4.49) 

if we further add the linearized simplified rotation matrix after the rotation matrix we get the 
notation: 
 

𝑥𝑠
′ = −𝑓

𝑥′−𝑦′𝑑𝜅′−𝑓𝑑𝜙′

−𝑥′𝑑𝜙′+𝑦′𝑑𝜔′−𝑓
      𝑦𝑠

′ = −𝑓
𝑥′𝑑𝜅′+𝑦′+𝑓𝑑𝜔′

−𝑥′𝑑𝜙′+𝑦′𝑑𝜔′−𝑓
                                                             (4.50) 

the next procedure is analogous for 𝑥𝑠
′  𝑎𝑛𝑑  𝑦𝑠

′  

 

( ) ( )−   +   −  = −  −   − x d y d f x f x y d f ds                                              (4.51) 



after division by -f: 

 

(1 −
𝑦′𝑑𝜔′

𝑓
+

𝑥′𝑑𝜙′

𝑓
) 𝑥𝑠

′ = (𝑥 ′ − 𝑦 ′𝑑𝜅′ − 𝑓𝑑𝜙′)                              (4.52) 

adjust to a form suitable for development (multiplication): 

 

𝑥𝑠
′ = (𝑥 ′ − 𝑦 ′𝑑𝜅′ − 𝑓𝑑𝜙′) [1 − (

𝑦′𝑑𝜔′

𝑓
−

𝑥′𝑑𝜙′

𝑓
)]

−1

                            (4.53) 

If we restrict the development to only first order members (i.e. only members where the differential 

value occurs at most once), we get: 

  ( ) =  −   + = +
−

x A B A B A ABs 1 1
1

                                        (4.54) 

The resulting equations will then be: 

 

𝛥𝑥 ′ = 𝑥𝑠
′ − 𝑥 ′ = −𝑦 ′𝑑𝜅′ − (𝑓 +

𝑥′2

𝑓
) 𝑑𝜙′ +

𝑥′𝑦′

𝑓
𝑑𝜔′                                                                 (4.55) 

 𝛥𝑦 ′ = 𝑦𝑠
′ − 𝑦 ′ = 𝑥 ′𝑑𝜅′ −

𝑥′𝑦′

𝑓
𝑑𝜙′ + (𝑓 +

𝑦′2

𝑓
) 𝑑𝜔′       

Finally, these expressions must be supplemented with the influence of translation according to 
ch.4.1: 

 

    𝛥𝑥 ′ = −𝑦 ′𝑑𝜅′ − (𝑓 +
𝑥′2

𝑓
) 𝑑𝜙′ +

𝑥′𝑦′

𝑓
𝑑𝜔′ + 𝑑𝑏𝑥

′ +
𝑥′

𝑓
𝑑𝑏𝑧

′  

𝛥𝑦 ′ = 𝑥 ′𝑑𝜅′ −
𝑥′𝑦′

𝑓
𝑑𝜙′ + (𝑓 +

𝑦′2

𝑓
) 𝑑𝜔′ + 𝑑𝑏𝑦

′ +
𝑦′

𝑓
𝑑𝑏𝑧

′                         (4.56) 

 
 
The expression (4.56) is called the "complete photogrammetric series", or historically the 
Gruber series, and is used in simplified theoretical derivations. The meaning and use of series was 
quite fundamental, especially in the era of analogue photogrammetry. 
 

 

 

 

 

 

 

 

 



5 Single-image photogrammetry 
Single-image photogrammetry has its use in both terrestrial and aerial and to some extent also 
satellite photogrammetry. It is a relationship between two planes, which must be considered in 
the choice of control points and in the processing.  
Single-image photogrammetry is divided into terrestrial and aerial; it has the same fundamentals 
and mathematical rules for both types, only the method of use is different. It is the oldest 
technology of photogrammetry and has currently a limited using because it is possible to 
automatically create higher quality and more accurate digital orthophotos using modern digital 
photogrammetry methods. 

Mathematical basis 
If the image of a planar object is exactly vertical, the relationship between the image, the object 
and the map is simple, and the image differs only in scale. However, in most cases, the image is 
not exactly vertical (the axis of the image is perpendicular to the object), so the scale in the image 
is variable with the position in the image due to the variable distance to each point, resulting in a 
perspective view. It should be noted that practically no object is perfectly planar, and this causes 
radial displacements of detailed points depending on their spatial distribution. Thus, single-
image photogrammetry produces photoplans that have limited accuracy. 
For an ideal geometric relationship between two planes, there is a fundamental theorem for 
projective geometry. In its first variant, by Pappus of Alexandria (4th century AD) and second 
variant by B. Pascal's projective theorem (17th-century)  

The basic is the cross ratio (Fig.xxx). Given four distinct collinear points A, B, C, and D, the cross 
ratio is defined as x(A, B, C, D) = AC/BC ∙ BD/AD. It may also be written as the quotient of two 
ratios: x(A, B, C, D) = AC/BC : AD/BD. Pappus first proved the startling fact that the cross ratio was 
invariant—that is, x(A, B, C, D) = x(A′, B′, C′, D′). 
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Fig. 5.1 Pappus theorem 

 

The mathematical representation of reality is a collinear transformation between the image and 
the map. It is a transformation from 3D to 2D. It is logical to go from 3D to 2D using relation (5.3), 
but the inverse from 2D to 3D cannot be done without additional information (the inverse relation 
is not well defined). 

Five control points (9 unknowns) are needed for the solution; dividing equations (5.2) by a 
constant c3and applying the substitution 1a = 1â / 3ĉ , 2a = 2â / 3ĉ ,..., 1= 3ĉ / 3ĉ yields the simpler 



expression (5.3), which is defined by only four control points (8 unknowns).  
 

𝑋 =
𝑎̂1𝑥′ + 𝑎̂2𝑦 ′ + 𝑎̂3

𝑐̂1𝑥 ′ + 𝑐̂2𝑦 ′ + 𝑐̂3
, 𝑋(𝑐̂1𝑥 ′ + 𝑐̂2𝑦 ′ + 𝑐̂3) = 𝑎̂1𝑥′ + 𝑎̂2𝑦 ′ + 𝑎̂3 

𝑌 =
𝑏̂1𝑥 ′ + 𝑏̂2𝑦′ + 𝑏̂3

𝑐̂1𝑥 ′ + 𝑐̂2𝑦 ′ + 𝑐̂3
, 𝑌(𝑐̂1𝑥 ′ + 𝑐̂2𝑦 ′ + 𝑐̂3) = 𝑏̂1𝑥′ + 𝑏̂2𝑦 ′ + 𝑏̂3 

 

(5.2)   

𝑋 =
𝑎1𝑥′ + 𝑎2𝑦 ′ + 𝑎3

𝑐1𝑥 ′ + 𝑐2𝑦 ′ + 1
 

 𝑌 =
𝑏1𝑥′ + 𝑏2𝑦 ′ + 𝑏3

𝑐1𝑥′ + 𝑐2𝑦 ′ + 1
 

(5.3) 

Expression (5.3) defines the central projection (also projective transformation), which is known, 
for example, from descriptive geometry. Note that there are no photogrammetric variables or 
constants in the above relation (f - camera constant, rotation angles, etc.); it follows that we can 
use virtually any camera even with unknown parameters - we just need to ensure that the images 
do not show too much distortion. If the distortion is noticeable, it should be removed 
beforehand, for which there are software tools. 

Until the turn of the millennium, single-shot terrestrial photogrammetry was clearly of great use 
in the creation of photographic plans of not very spatially distributed objects such as facades of 
houses. 

The resulting photoplan (its accuracy) will be influenced by the scale of the image and especially 
by the depth of the object being targeted. When applying single-image photogrammetry, it is not 
possible to target an object with too much depth (the method is not suitable for houses with 
many balconies, staircases, etc.). In the case of spatially distributed objects, the difference 
between the central projection of the image and the orthogonal projection would be too 
significant and would cause radial shifts of the detailed r" according to the relation: 
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. where mF is the scale number of the photoplane. When the maximum differences r"max  in the 

photoplane are required (given a predefined value), the spatial (or depth) distribution of the object must 

not be greater than y: 
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It is clear from the above formulas that the selection of the appropriate camera is important. The 
use of long-focus cameras, however, introduces the problem of a small angle of view, which is 
particularly pronounced when imaging monuments, where we are usually limited by the 
maximum possible distance from the object (e.g. the width of the street). Furthermore, it is 
obvious that the distortion caused by radial displacement of the points increases away from the 
centre of the image and it is therefore desirable to place the parts with spatially distributed details 
preferably in the centre of the image. In case the object is deeply segmented and the differences 
in the y-coordinate exceed a certain limit, it is possible to redraw the object in layers (in parts that 
have approximately the same height or distance from the standpoint; again, for each layer we 
need at least 4 control points). If it is not even possible to use the redrawing in parts, it is necessary 
to use the stereophotogrammetric method or to create an orthophoto, which is commonly used 
today. 

 

 

    

Fig.5.2: Influence of the depth (spatial) distribution of the object 

 

The use of the single-image method for aerial photogrammetry is limited to documentation or 
interpretation work for flat terrain. The use is possible in the form of photomaps or photomosaics 
(several connected photomaps) only for flat areas without a requirement for high accuracy (used 
in the so-called combined mapping method). 

 

For the long-time used redrawers, a good quality control map base with at least four contrast 
control points was necessary. The control map base was mounted on a projection plate, the 
magnification was adjusted approximately, and the redrawing process was iteratively manually 
performed, based on the necessary tilt of the table and the image (the so-called Scheimpflug 
condition); without this, general photos cannot be rectified correctly (only if they are perfectly 
accurate vertical images). Analog image redrawing was completely abandoned in the 1990s and 
replaced by digital redrawing, which is much faster and more accurate. The procedure is simple 
and can be applied on virtually any software that can perform a collinear transformation of the 



image based on the control points. Even so, it is now very little used and has been replaced by 
digital orthophotos. 

 

 

 

 

    

 

 

 

 

 

Fig. 5.3 Historically, analogue devices, croppers (left) and rectifiers (right) were designed for single-

image photogrammetry. They were abandoned after the transition to digital technology. 

 

 

The mathematical solution is based on the calculation of the coefficients of the collinear 
transformation using control points. A minimum of four suitably placed control points are needed 
in the image (preferably in the corners of the image, no three of these points must lie on a straight 
line, all control points must lie in the same plane). If there are more control points, the alignment 
will be performed. The basic equations are: 
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a x a y a

c x c y

Y
b x b y b
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                                                       (5.11) 

X a x a y a c x X c y X

Y b x b y b c x Y c y Y

=  +  + −  − 

=  +  + −  − 

1 2 3 1 2

1 2 3 1 2

                           (5.12) 



The equations are written as a system of eight linear equations: 
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In matrix form, the solution will be simple: 

A a X

a A X
1

 =

= −                                                                (5.14) 

          

Fig.5.7: Original image and photo-plane, taken by the old measuring camera (left), image, taken by an 

ordinary photographic camera and its digitally redrawn form - the distortion of the image due to the 

unremoved radial distortion is clearly visible (right) 

 

*** 



 

It is useful to note the following relationships (analogies) between the image and its product and the 

map product : 

photograph - image (it has no scale or orientation) 

photo plan, ortho-plan - plan (has scale, orientation, can be measured inside it) 

photomap, orthophotomap - map (has all the elements of a map such as scale, coordinate system, 

orientation, frame and out-of-frame data) 

6  Intersection photogrammetry 
 

Intersection photogrammetry is one of the oldest photogrammetric methods. Basically, it is a 
forward intersection solved by means of metric images. The historical solution is as follows: 

 

Fig. 6.1: The principle of old intersection photogrammetry 

  The horizontal angles of the projection rays with the line of sight are calculated from simple 
equations: 

( )
tg

x

f
tg

z

f x

z

f
 =


 =



+ 
=


  , cos

2 2
                    (6.1) 

 



If we know the geodetic coordinates of the survey stations and the intersections of the view axes 
(it is necessary to choose a naturally or artificially signalled point as the intersection of the view 
axes and measure to it with a high precision of about 10 cc), we can calculate the bearing of the AS 
and BS lines by adding or subtracting the angle at the left and right survey stations determine the 
measuring angles for the technology of forward intersection of measuring angles.  

      The altitudes are obtained twice as in the trigonometric measurement of altitudes.  The images 
are measured monocularly and therefore difficulties will occur in identifying the same points on 
the left and right images when surveying terrain without distinctive points. 

In current systems, this solution is modified with respect to today's possibilities of digital 
photogrammetry, and according to formula (6.1) it is not calculated, but an analytical solution is 
used (e.g. the well-known software Photomodeler). The solution is based on the basic 
photogrammetric equation (6.2). All photographic work consists of taking a suitable number of 
images with convergent axes of view that encircle the object to be imaged. The images must have 
sufficient overlap to identify the tie points. 

R is the spatial rotation matrix, X, Y, Z are the geodetic coordinates of the points, X0, Y0, Z0 are the 
coordinates of the projection center, x', z', (-f) (for terrestrial photogrammetry) are the measured 
image coordinates, and x'0, z'0 are the coordinates of the principal point. Calculation of the 
unknowns ,,,X0, Y0, Z0, or f, x'0, z'0 (=dx,dz) for each image is done by iterating using the 
coordinates of known control points; this means that we need approximate values of the 
unknowns before calculation. A correction for radial distortion (Δx´,Δz´) should also be 
introduced into the calculation. 

A necessary requirement is to measure the tie points in the images, which are used to create the 
model in a similar way to the orientation points in the stereo method for relative orientation. The 
overall calculation uses a bundle adjustment in the form: 

(

𝑥 ′ − 𝑥0
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𝑧 ′ − 𝑧0
′ + 𝛥𝑦 ′
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) = 𝑚 ⋅ 𝑹𝑇 ⋅ (
𝑋 − 𝑋0

𝑌 − 𝑌0

𝑍 − 𝑍0

)                                (6.2) 

In addition, enough control points must be geodetically measured on the object. The minimum 
number for transformation into the geodetic system is seven measured values (practically 3 
points). The spatial processing of the image content can be done from two images without control, 
three or more images with convergent view axes give us the possibility of control and adjustment; 
from the point of view of accuracy, the rules for intersection from measurement angles must be 
respected. More images mean more work, but also more precise positioning of the points to be 
determined. Intersection photogrammetry can only be used for artificially or naturally 
signalled points. 



 

Fig.6.2: Intersection photogrammetry - scheme of photo capturing 

 

7 Stereoscopy 
Photogrammetry has applied the stereoscopic method since its introduction by Pulfrich in 1901. 
It allows to evaluate based on stereoscopic perception also non-signalized points, thus 
completely revolutionizing the possibilities of photogrammetry. Stereoscopic observation and 
processing of photogrammetric images is called artificial stereoscopic perception. A healthy 
person is endowed with natural stereoscopic vision, which is based on simultaneous observation 
of an object with both eyes. The principles of stereovision, its rules, the creation of artificial 
stereoscopic perception and its use in measurement are the subject of the following paragraphs. 

Natural stereoscopic vision 
Observation with one eye is called monocular observation, observation with both eyes is 
binocular observation. Binocular viewing of landscapes or stereoscopic images gives humans the 
rare ability to automatically determine the relative distances of objects. This can also be done 
approximately by monocular observation, but only on the basis of an idea of the size of objects 
and an innate experience of perspective.  

The design of the eye and its function is a perfect and as yet unsurpassed system that can be 
modelled quite solidly by current technical tools (adaptive optics, automatic aperture, CCD 
elements, light pipes, computer). 

Stereoscopic perception 
The basis of successful stereoscopic perception is correct and simultaneous eye 
accommodation and convergence. When observing point P, it is necessary that the eye axes 
intersect at the observed point P. The eye axes then form the so-called convergence angle g. 
However, to see the points sharply, it is necessary to refocus the optical system to a given distance 
- to accommodate the eye, i.e. to change the radius of curvature of the eye lens using the eye 
muscles. According to previous extensive research, over 90% of people have good stereoscopic 
perception.  

 

 



 

 

Fig.7.1: Test stereoscopic figure: an artificial stereoscopic perception should occur when 

viewed from a normal reading distance; vertical parallaxes can be removed by rotating the 

figure 

 

 

 



 

Fig.7.2: Stereoscopic capabilities of the eyes 

 

 

According to Figure 7.2, point P1 corresponds to the convergence angle 1, point P2 to the 
convergence angle 2, and point P3 to the convergence angle 3. The convergence angles 1 and 
3 differ from the convergence angle 2 by small values 1-2 and 3-2, which we call angular 
parallaxes according to the equation: 
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                                                        (7.1) 

For the more distant point P1 compared to point P2 the angular parallax is negative, for the closer 
point P3 the angular parallax is positive, for points as distant as pointP2 the angular parallaxes are 
zero. The differences of Pi point images in the direction of x´ (x´´) axes on the retina of the eye are 
physiological parallaxes, the differences of Pi point images in the direction of z´ (z´´) axes do not 
occur in healthy individuals (but they can be induced by gentle pressure of a better unsharpened 
object - e.g. a finger on the eye). These physiological parallaxes correspond to horizontal and 
vertical parallaxes in artificial stereoscopic phenomena. These are defined using an image 
coordinate system as the difference in the image coordinates of the corresponding point 
(homologous point) in the two images: 
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                                                           (7.2) 

where p is the horizontal parallax and q is the vertical parallax. 

 
 
The theoretical monocular resolution of the eye is about 60´´; this corresponds to a situation 
where at least one free cone is needed between two points to distinguish their images on the 
retina. The stereoscopic resolution of the spatial position of the points using the eyes ends around 
500 m , where the magnitude of the error is already the same as the determined distance (but it 
depends on the observer). 

 
 
If we replace the natural stereoscopic observation of the surrounding reality with the observation 
of specially made photographic images of the same object, we get the same stereoscopic 
perception as when observing the real object. For practical observation and to improve the 
stereovision, aids are used. 

 

In order to produce an artificial stereoscopic perception, the following must be satisfied: 

 
- The eyes must observe the images at the same moment, but at the same time with each eye 
separately.  

 
- The images must both show at least partly the same location (there must be an overlapping area, 
i.e. the area shown in both images), the images must show horizontal parallax, i.e. they must be 
taken from two different points of the stereoscopic base. 

 
- The directions of the observation rays to the corresponding points must intersect and the image 
must not show vertical parallax. 

 
Aids for artificial stereovision 
Due to the difficulties in inducing artificial stereoscopic perception using only the eyes and the 
short eye base, it is necessary to use aids to enhance or multiply the stereovision. 

Stereoscopes 
One of the best-known aids for forming stereovision is the stereoscope. The design of 
stereoscopes can be divided into lens, mirror and prism. 



 

Fig.7.3: Mirror stereoscope (left), prism stereoscope (right) 

Lens stereoscopes 
The lens stereoscope is the simplest design. The base of the stereoscope is equal to the base of 
the eye, and at the centres of the eyes there are either apertures or viewing magnifiers only; in 
these stereoscopes it is not possible to refocus and change the eye spacing. 
 
 

Mirror stereoscopes 

In this type, the eye base is expanded k-times to about 25cm by means of optical mirrors (silvered 
from above, otherwise a double reflection is created). Eccentrically movable eyepieces are used 
for refocusing and changing the eye spacing and it is also possible to tilt the mirrors for corrections 
and changing the viewing base. 

 
 

Prism stereoscopes 
These are constructed on the same principle as mirror stereoscopes but use prisms for reflection. 
They are usually part of the optical system of photogrammetric plotters. 
 
 

Working with a stereoscope 

A stereoscope uses eyepieces or viewing magnifiers that convert the cone beams coming from 
images that are approximately in the focal planes of the eyepieces into parallel beams. The eye is 
then not forced to accommodate a nearby object, and looking into a stereoscope can be likened 
to looking at a distant object. When viewing through a stereoscope, the images that are placed 
under it must be oriented so that the corresponding points on the two images lie on parallel lines 
with the base of the eye. 



 

 

 

Fig.7.4: Orientation of images under the stereoscope 

 

Anaglyphs 
Anaglyphic observing systems are based on a simple principle - they use glasses with coloured 
lenses (usually blue and red - spectrally as far apart as possible, so that the images interfere as 
little as possible, which cannot be completely secured). For this reason, this method is rarely 
used professionally. The following is observed with coloured glasses: 

- projected left and right images of a stereoscopic pair on a display in the colours of the viewing 
glasses 

- a stereoscopic pair of images (in paper or film form), each of which is made in one colour of the 
viewing glasses  

- a juxtaposition of red and blue stereoscopic images (often found on the Internet or in 
magazines) 
Stereoscopic perception, made with anaglyphs, is not very high quality, but it is simple and 
inexpensive. It also allows observation by several people at the same time. 



 

 

 

 

Fig.7.5: Anaglyphic image and glasses 

.  

 

 

Use of polarizing filters 

A widely used system of stereoscopic observation is one that uses light polarization and special 
construction components. It is used in digital stereophotogrammetry. A liquid crystal filter is 
placed in front of the monitor, changing the polarization in synchronization with the imaging of the 
right and left images. The result is observed through glasses with polarising glasses, one of which 
transmits vertically and the other horizontally polarised light. These glasses are inexpensive, 
lightweight, simple and do not need a power source. 

This system can be found, for example, in 3D cinema. 

 

Fig.7.6 Polarizing glasses 

Crystal glasses 
Crystal glasses create a stereo image by synchronised aperture and projection of individual 
frames of a stereo doublet. These systems have been tried before with mechanical apertures but 
have failed to catch on - waiting for new technological features. These did not arrive until the mid-
1980s under the name CrystalEyes©. 

The CrystalEyes© system is mainly used in digital stereophotogrammetry or virtual reality. 
Currently, the most widely used system works on the basis of active glasses, between whose 



glasses are liquid crystals that change the light transmission (closed or open). Left and right 
images are alternately transmitted to a monitor, and information about which image is being 
displayed is transmitted by an infrared transmitter above the monitor to the glasses; the glasses 
respond by closing the passage to the right eye with liquid crystals if the left image is transmitted, 
and vice versa. If the frequency of this change is high enough, at least 25Hz, the human eye 
perceives this change as a continuous image, similar to a conventional film. Crystal glasses are 
more expensive, larger and need a power source (battery). Today's systems have a frequency 
better than 120Hz. 

 

. 
 
 
 

 

 

 

 

Fig. 7.7: Crystal glasses, on the left an older type around 2000, on the right today's product 

 

Polarizing glasses and semi-transparent polarizing mirror 

 
The two LCD monitors are positioned above each other at an angle of approximately 110°. A semi-
transparent mirror is inserted in their axis, which also acts as a vertically polarizing filter. The right 
image is displayed on the upper monitor and its image is horizontally polarised when reflected by 
the mirror. The lower monitor displays the left image, whose image is polarised vertically when 
passing through the mirror. Conventional glasses with polarising filters are used for observation. 
The advantage is that there is no need to alternate two images on one monitor, therefore high-
resolution monitors can be used, and the stereoscopic perception is of higher quality. 

The display is high-resolution and free of some annoying flicker for a high-quality 3D stereo view. 
PluraView's innovative beam-splitting technology, which offers the highest possible stereo display 
quality, is the basis for accurate stereoscopic 3D displays. PluraView stereo displays can currently 
be up to 28-inch diagonal, with resolutions up to 4K (UHD) and a colour depth of 10 bits per pixel. 



 

 

 

Fig.7.8 3D Plura View stereo monitor 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 Stereophotogrammetry 
The stereophotogrammetry method uses artificial stereo vision and binocular observation of 
spatial points. The image pairs can be taken in different ways, but for a good evaluation it is 
necessary to keep a suitable base length, approximately equal heights of both shooting positions 
and preferably parallel axes of view. Current evaluation systems allow the evaluation of almost all 
image material taken in different ways. It is usually not necessary to follow old, well-defined 
procedures that were based on limited evaluation possibilities. Nevertheless, even in today's 
digital and computer age, it is still advisable to follow the following guidelines for quality stereo 
imaging. In the classical concept of terrestrial analogue photogrammetry, we classify: 

- normal case (axes of view are perpendicular to the photogrammetric base, ,=0, =100gon) 
- twisted case (axes of view are twisted by a certain angle to the base, ,=0,  =general) 
- tilt case (axes of view are tilted by a certain angle. =100gon,=0, =general) 
- general oriented case (,, are general) 
- convergent images 
- divergent images 
 
 

8.2 Mathematical background 
The following text describes the classical procedures, especially applicable to analogue 
photogrammetry; it is useful to describe them in order to understand the whole legacy technology. 
Current digital technology no longer proceeds in this way; everything is solved analytically from 
the basic photogrammetry equation (4.43). The procedures had to be adapted to analogue 
evaluation machines, which were only able to evaluate certain configurations of images; today, 
although this is not necessary, the rules of stereophotogrammetry still apply. 

 

8.2.1 The normal case 
The basis of terrestrial photogrammetry is the so-called normal case, i.e. the situation where the 
axes of the image are perpendicular to the base. According to Fig. 8.1, a model system is chosen 
with the x-axis parallel to the base b, the z-axis perpendicular to the x-axis and pointing upwards, 
and the spatial y-axis (distance). Often, the centre of the input pupil of the left position is chosen 
as the origin of the model system. At the same time, the frame coordinate system is defined. 

 



 

 

Fig.8.1: Photogrammetrical normal case 

 

The derivation of the relationships between the image coordinates and the model system is 

simple: 
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For practical purposes, it is necessary to derive the theoretical accuracy of the determination of 

individual model coordinates. For the equation describing y, we form a total differential: 
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Equation (8.3) describes the effect of all three variables; db expresses the effect of the 
inaccurately determined base length. It is true that dy/y=db/b and the error in the base will result 
in an equally large relative error in the y coordinate. For larger base lengths over 3m, maintaining 
the required accuracy will not be a problem (just measure it several times with a band to mm), but 
for short bases, the base length needs to be determined more accurately than we normally can. 
In order to maintain the accuracy of the short base length, double measuring chambers have been 
constructed where fixed or forced centering is used. In normal cases, therefore, the error from an 
incorrectly determined base can be neglected. A similar reasoning applies to df, i.e. the 
inaccurately determined size of the camera constant. However, this is determined in the 
laboratory or numerically to an accuracy of 0.01mm and the relative error of df/f will be negligible 
if it is maintained that the size of the camera constant has not changed (not refocused!) during 
imaging at both sites. 



 

 

The accuracy in the spatial component of coordinates is the smallest, so the relationship for the 
accuracy of photogrammetry is derived as follows. A completely decisive influence on the 
accuracy of the y determination will be dp - an incorrect determination of the horizontal parallax. 
In most error analyses, a simplified relation will be enough: 
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After moving to the mean errors, we arrive at the formula used: 
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Several important considerations follow from this formula: 

- the accuracy of distance determination decreases with the square of the distance 

- the accuracy of y can be improved by reducing the shooting distance, increasing b or f 

- the accuracy of parallax determination is of great importance and is usually determined by 
the capabilities of the machine (0.01-0.001mm) 

- in the formula the first term is the inverse of the base ratio, which is the carrier of the 
accuracy - these are freely selectable variables, mP and f are determined by the equipment 
used 
 
 
A simplified relation is used for other coordinates  
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Fig.8.2: Normal case 

 
 
 
A different derivation follows from the following figure and reasoning: we start from the basic 
equation (4.47) and the rotation matrix. The rotation matrix will be a unitary matrix for the normal 
case (i.e. =0, =100gon, =0). 
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We rewrite equation (3.6) for the case of terrestrial photogrammetry  
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After substituting from (8.8) into (8.9) we get: 
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According to Figure 8.2, we express the projection centres in the model coordinate system: 

O1=[0,0], O2=[b,0]. For the two images of the stereoscopic pair, we get the expressions: 
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We solve the system of equations: 
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The coordinate z is obtained twice with the possibility of checking if the condition z´= z´´ (z´-
z´´=0 or q=0, the condition of zero vertical parallaxes) is fulfilled.  

 

 
8.2 Photogrammetric base 
Among the basic parameters in stereophotogrammetric imaging is the determination of the most 
suitable length of the photogrammetric base. In stereophotogrammetry, we define the so-called 
base ratio (b/y) as the carrier of the accuracy of coordinate determination. The length of the base 



depends on the distance of the nearest and farthest points that will be evaluated from the 
considered base with the desired accuracy. The determination of the most suitable length of the 
photogrammetric base is based on the normal case of stereophotogrammetry.  

The relationships for the maximum and minimum thrust base can be derived, the resulting 
modified formulas are used: 
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So far we have assumed that the elements of the exterior and interior orientation were set up 
perfectly accurately in the terrestrial photogrammetry. Since each method has its own technical 
possibilities, it was necessary to define, especially before, how precisely the elements of the inner 
and outer orientation had to be set. For aerial photogrammetry the situation was different, the 
elements of the internal orientation were usually defined and the elements of the external 
orientation had to be calculated (due to the impossibility of obtaining directly accurate vertical 
images). For terrestrial photogrammetry, it was then necessary to define: 

● the elements of internal orientation; f, dx, dz are usually known  
●     the elements of the external orientation; the angles ,,  are set using libels and an 
orientation device, the position of the projection centre is determined by geodetically locating the 
left photographic position (the right one can be calculated if the base length and orientation are 
known) 

 
Next, it is necessary to know how exactly these operations are to be carried out. An accuracy 
analysis can be made on the basis of photogrammetric series, where the effects of the individual 
elements of the exterior orientation on the image coordinates will be considered separately.  

 
At present, the solution is the same for terrestrial and aerial stereo-photogrammetry; everything 
is solved on a computer that does not care whether it calculates with a unit matrix or a general 
matrix (this is usually the approximately normal case). It must be remembered that this was not 
the case before and the calculations of the exterior orientation were problematic and lengthy; for 
this reason, the procedures of terrestrial photogrammetry (where the viewpoint and the object do 
not move and the measurement parameters can be standardised) have been technologically 
simplified to the methods described. Simpler relations and photogrammetric plotters could be 
used to solve them. 

 
Performing photogrammetric surveying 
 

Nowadays, field work has become much easier. Here, of course, is the procedure for ground 
photogrammetry. Practically, after the object has been recognised, it is necessary to take a good 



image of the object and to locate the control points for transformation into the geodetic system. 
The control points are usually signalled with targets or other suitable markers so that they are 
visible on the images (their size can be calculated). The control points must also be suitably 
spaced around the object, must not lie in a straight line and should be spatially distributed, the 
minimum number for spatial transformation being 3 points (see below). An excessive number of 
control points shall always be targeted due to alignment, control and the possibility that some 
control points may not be suitable or show significant variation despite best efforts to locate 
them.  

Their measurement is nowadays simple, using a total station or GNSS equipment. The actual 
imaging is done with a good quality digital camera from a tripod or handheld, but it is advisable to 
follow the basic photogrammetric rules, i.e. to shoot for stereophotogrammetry with a large 
overlap between images and with approximately parallel axes of view. Modern SfM (Structure from 
Motion) methods require a large number of overlapping images in contrast with converging shot 
axes complemented by a set of images with parallel shot axes for MVS (Multi View Stereo). The 
processing of such data is then done almost automatically in the software. 

The actual imaging procedure depends on the type of camera and the possibilities of the method 
used, but also on the time available. It is advisable to keep a sketch of where the photo was taken 
from, record the time and the weather. Because of possible shadows in the photographs, which 
are very distracting, it is advisable to find out the right time of day to shoot or wait for a compact 
cloud cover, which is best for technical photography - there are no shadows, and the lighting is 
constant). Furthermore, it is necessary to arrange access to the building and, if necessary, access 
to surrounding buildings, to provide a platform or at least a ladder for smaller buildings. Sufficient 
capacity of the storage medium is a matter of course, as well as the condition of the batteries and, 
if necessary, the installation of lighting of the object with photographic lights. In general, bad 
images are difficult to process. Especially when shooting indoors, this matter is highly 
problematic and it is advisable to consult, for example, a professional photographer. 

 

 

 

 

 

  

 

Fig.8.3 Fig.8.4: Signalling of the control points 


