
Structure from motion 
 

Structure from motion (SfM) is a photogrammetric technique for estimating three-dimensional (3D) 

structures from two-dimensional overlapping images or video sequences. Usual cases are static scene 

and moving camera and moving scene and static camera. SfM can be understood as a process of 

inversion of image formation. It is widely used in many applications, such as robot navigation, 

autonomous driving, and augmented reality. SfM computes 3D scene structure (tie points) and camera 

motion which are coordinates of projection centers and camera rotation in space.  

SfM algorithm consists of several algorithms and steps to reconstruct 3D structure. First it is necessary 

to detect features in images, match features, compute orientation of images and finally it is important to 

optimize model, see figure 1.  

 

Figure 1: 3D reconstruction of cardinal Beran statue, dense cloud with cameras. 

1. Find and track features 

Features 

It is not easy to explain what feature exactly is. But it is natural ability for human brain to find features in 

image and across set of images. Feature must be well identifiable in set of images. Feature is 

represented by coordinates of image point, but it is not only single point in image. Feature surroundings 

is also very important feature property. Let’s see figure 2 for more explanation. Image patches A and B 

is impossible to determine location of patches by coordinates of single point. We can determine area 

where patch A can be placed. It is possible to find several locations for patch B. Patches C and D are 

edges. We can find several possible locations but find the right one is still difficult. Patches E and F are 

corners, and it is simple to find their exact location in the image [1].  



 

Figure 2: Image features [1] 

 

Scale-Invariant Feature Transform (SIFT) 

There are several corner detectors like Haris Corner Detector and Shi-Tomasi Corner Detector which 

were able to detect and match features in the image. These corner detectors are not scale-invariant. 

Scale invariance is important when you use set of images with different scales of object. Detected corner 

in non-scaled image can be well identifiable but when you zoom in the corner it exceeds pixel window. 

The corner breaks down into multiple pixels and it can be impossible to detect this corner again in 

zoomed image.  

D. Lowe came up with SIFT algorithm in 2004 [2] which solves feature detection in different scales. SIFT 

algorithm finds features in scale-space, assign them orientation, compute their description and match 

keypoints (features) between images.  

 

Scale-space extrema detection  

Scale-space is created for image extrema detection. To find these extrema Laplacian of Gaussian (LoG) 

is computed for image with various σ values. LoG acts as blob detector. Various sizes of these blobs 

are found by σ change. SIFT use Difference of Gaussian (DoG) instead of LoG since LoG is costly. DoG 

is created as difference of Gaussian blurring of an image using different σ values, see figure 3.  

 
 



 
Figure 3: Image scale-space [2]. 

 
Features (potential keypoints) are found as local minima and maxima across the scale and space. 

Features are compared with its neighbors and with the same submatrix 3x3 in the next and the previous 

scales as shown in figure 4. 

 

 
Figure 4: Maxima and minima of the DoG images comparison [2], where X mark is a local minima or maxima.  

 

Accurate keypoint localization 

  

Potential keypoint location is found as maxima or minima of 3D quadratic function fitted to local sample 

points. This extremum is tested to remove low contrast keypoints. DoG has great response along edges. 

To remove these keypoints Hessian matrix (2x2) is computed. Edges has one eigen value larger than 

the second. The ratio between eigen values is tested. 

 

Orientation assignment 

Orientation assignment of keypoint is performed on local image properties. Keypoint descriptor is 

computed relative to keypoint orientation to ensure invariance image in rotation. Scale-invariance is 

achieved by choosing the closest scale of Gaussian smoothed image to the scale of the keypoint. 

Gradient magnitude and orientation are computed based on pixel differences of each image sample. An 

orientation histogram is created from orientations which are weighted by gradient magnitudes and 

Gaussian-weighted circular window with a σ. The highest peak in histogram is detected. For any other 

peak above 80% of the highest peak a new keypoint with orientation is created. Finally, a parabola is 

fitted to peak and its closest surroundings to achieve better accuracy.  



 

Keypoint descriptor 

Descriptor is a vector which describes local image region around keypoint. Image gradient magnitudes 

and orientations are computed around keypoint location in Gaussian smoothed image. The coordinates 

of the descriptor and the gradient orientations are rotated relative to keypoint orientation to achieve 

orientation invariance. Gaussian weighting function with σ equals to one half of the width of the 

descriptor (circle in the figure 5). This function avoids sudden changes in the descriptor and gives less 

contribution to gradients far from the descriptor center. As shown in the figure 4 descriptor is on the right 

side and consists of 2x2 histogram array. Each array is orientation histogram of 4x4 region (sample 

array) where directions represent orientations, and the length of the arrow is magnitude. To avoid 

boundary, effect the trilinear interpolation is used to distribute each value of gradient. 1 – d is used as a 

weight, where d is distance of the sample from the center. The descriptor is created as a vector of all 

histograms. Best results are achieved with 4x4 histogram array created from 16x16 sample array. Then 

the descriptor is modified to reduce illumination change. The vector is normalized to unit length to 

remove contrast change and brightness change. However non-linear illumination change is not removed 

by normalization. The effect of non-linear illumination causes a large change in some magnitudes for 

soma gradients, but less for gradient orientations. Large gradient magnitudes are restricted to the value 

of 0.2 in normalized vector and then the vector is renormalized.  

    

 

Figure 5: Keypoint descriptor creation [2]. 

 

 

Keypoint matching 

The best candidate for the match is determined as a nearest neighbor. It is defined as minimum 

Euclidean distance for the descriptor vector. Some keypoints achieve incorrect match since they rise 

from background, noise or other reasons. In this case it is useful to use the ratio of the closest and the 

second closest distance for matching verification. If the ratio is greater than 0.8 the match is rejected. It 

reduces false matches for 90%.  

 



 

Figure 6: SIFT keypoints in the image of statue cardinal Beran. 

 

Important feature detectors and descriptors 

SURF (Speeded Up Robust Features) 

SURF [3] is faster feature detector and descriptor than SIFT. It simplifies some steps of SIFT. SURF 

approximates LoG with Box Filter which speed up calculation. Scale and location are derived from 

determinant of Hessian matrix. SURF uses wavelet responses in horizontal and vertical direction and 

applying gaussian weights. Image orientation is determined from a plot by calculating all responses in 

sliding window. SURF uses wavelet responses for feature descriptor. A feature neighborhood of 20s x 

20s (where s is chosen size for feature) is used for descriptor computation which is divided into 4x4 

subregions. It forms 64-dimension descriptor vector with extension to 128 dimensions.  

 

FAST (Features from Accelerated Segment Test) 

FAST [4] is a corner detector. It is intended as feature detector for SLAM (Simultaneous Localization 

and Mapping) technology with limited computational technology. It takes image pixel and creates circle 

around this point. Pixels laying at this circle are tested whether they are brighter or darker (threshold 

value) than chosen image pixel. This pixel is considered as corner if n pixels at the circle is brighter or 

darker than chosen pixel.  

 

BRIEF (Binary Robust Independent Elementary Features) 

BRIEF [5] creates unique set of pixel pairs in feature surroundings. Then pixel intensity is of these pairs 

is compared and results of comparison are stored into a bit-string (binary vector). Hamming distance is 



used for matching descriptors. Hamming distance takes number of different (binary) positions when 

compares descriptors.  

 

ORB (Oriented FAST and Rotated BRIEF) 

ORB [6] uses FAST feature detector improved for feature orientation and BRIEF descriptor following 

this orientation. ORB is free and faster than SIFT and SURF and descriptor works better than SURF.  

 

2. Estimation structure and motion  

Epipolar geometry 

Epipolar geometry is the geometry of stereovision. It defines geometric relationships between 3D points 

and their projections into the 2D image plane. These relationships are based on assumption of pinhole 

camera model. Figure 7 below shows the geometry of stereovision.  

 

Figure 7: Epipolar geometry of stereovision. 

Where X is 3D point, C, C’ are projection centers, x, x’ are image coordinates of 3D point X, e, e’ are 

epipoles (2D coordinates), l, l’ are epipolar lines and P, P’ are projection matrices. 

 

Projection matrix 

Projection matrix defines projection of 3D points into an image plane (2D). Projection matrix P is 

multiplication of calibration matrix K, rotation matrix R, translation vector T and vector of 3D point 

coordinates X.  

𝑃3𝑥3 = 𝐾3𝑥3 ∙ [𝑅3𝑥3 𝑇3𝑥1] [
𝑋
1
]
4𝑥1

= 𝐾3𝑥3 ∙ 𝑅3𝑥3 ∙ [𝑋3𝑥1 − 𝐶3𝑥1] 

Where C is 3D coordinates of projection center.  

 



𝐾 = [
𝑓𝑥 𝑠 𝑥0

0 𝑓𝑦 𝑦0

0 0 1

] 

Calibration matrix K is shown above. Where fx is focal length for x axis, fy is focal length for y axis, x0, y0 

are coordinates of principal point and s is skew parameter. This is full calibration matrix which can be 

decreased. Focal lengths ratio fy / fx is aspect ratio and can be removed from computation by defining 

one parameter for focal length f. Skew parameter s can be set to 0.  

 

Essential matrix 

Essential matrix is a special form of fundamental matrix in sense of normalized image coordinates. 

Normalized coordinates are obtained by decomposition of projection matrix P. Let 𝑥 are image 

coordinates and normalized coordinates are 𝑥̂, then 𝑥̂ = 𝐾−1 ∙ 𝑥 = [𝑅 𝑇] ∙ 𝑋 (X are homogenous 

coordinates). Matrix [𝑅 𝑇] is called normalized camera matrix. Essential matrix has a form: 

𝐸 = [𝑇]𝑥𝑅 

Defining equation for Essential matrix is: 

.𝑥 ′̂𝑇 ∙ 𝐸 ∙ 𝑥̂ = 0 

By substituting 𝑥 ′̂and 𝑥̂ gives equation: 

𝑥′𝑇 ∙ 𝐾′−𝑇
∙ 𝐸 ∙ 𝐾−1 ∙ 𝑥 = 0 

𝑥′𝑇 ∙ 𝐹 ∙ 𝑥 = 0 

Where F is fundamental matrix and relationship between Fundamental matrix and Essential matrix is: 

𝐸 = 𝐾′𝑇 ∙ 𝐹 ∙ 𝐾 

Essential matrix has 5 degrees of freedom, R and T has both 3 degrees of freedom, but there is scale 

ambiguity since Essential matrix is homogeneous quantity. Another constrain is that Essential matrix 

has 2 singular values equal, and 3rd is equal to zero [7].  

 

Fundamental matrix 

Fundamental matrix is defined below and must satisfy for any pair of matching point x’, x (homogenous 

image coordinates) in two images [7]. 

𝑥′𝑇 ∙ 𝐹 ∙ 𝑥 = 0 

𝑥′𝑥𝑓11 + 𝑥′𝑦𝑓12 + 𝑥′𝑓13 + 𝑦′𝑥𝑓21 + 𝑦′𝑦𝑓22 + 𝑦′𝑓23 + 𝑥𝑓31 + 𝑦𝑓32 + 𝑓33 = 0 

After denotation a set of linear equation is obtained: 

𝐴𝑓 = [
𝑥′1𝑥1 𝑥′1𝑦1 𝑥′1

⋮ ⋮ ⋮
𝑥′𝑛𝑥𝑛 𝑥′𝑛𝑦𝑛 𝑥′𝑛

𝑦′1𝑥1 𝑦′1𝑦1 𝑦′1
⋮ ⋮ ⋮

𝑦′𝑛𝑥𝑛 𝑦′𝑛𝑦𝑛 𝑦′𝑛

𝑥1 𝑦1 1
⋮ ⋮ ⋮

𝑥𝑛 𝑦𝑛 1
] 𝑓 = 0 

The solution is right null-space of A. It is done via SVD decomposition. 

𝑈 ∙ 𝐷 ∙ 𝑉𝑇 = 𝑠𝑣𝑑(𝐴) 



𝑓 = 𝑉:,9 

After reshaping f to form 3x3 (F) it is necessary to apply constraint to rank of F matrix. It is done by SVD 

cleanup.  

𝑈 ∙ 𝐷 ∙ 𝑉𝑇 = 𝑠𝑣𝑑(𝐹) 

𝐹𝑟𝑎𝑛𝑘 2 = 𝑈 ∙ 𝐷 ∙̃ 𝑉𝑇 

Where 𝐷̃ is D with last element set to 0. 

 

Epipole and epipolar line 

Once F matrix is reconstructed image coordinates of epipole and equation of epipolar line can be 

computed. Epipolar lines are defined: 

𝒍′ = 𝑭 ∙ 𝒙, 𝒍 = 𝐅𝐓 ∙ 𝒙′ 

Epipol coordinates in the left image are calculated: 

[𝑢, 𝑑] = 𝑒𝑖𝑔𝑠(𝐹′ ∙ 𝐹) 

𝑒 = 𝑢(: ,3) 

e is defined by homogenous coordinates, so it is necessary to define scale factor by normalizing last 

element of e to 1. Epipole of right image is defined in a similar way: 

[𝑢, 𝑑] = 𝑒𝑖𝑔𝑠(𝐹 ∙ 𝐹′) 

𝑒′ = 𝑢(: ,3) 

 

Automatic estimation of Fundamental matrix 

Modern approach uses automatic estimation of Fundamental matrix. The main role plays RANSAC 

algorithm [8]. RANSAC is robust iterative method which estimates model parameters from noise data. 

Input into RANSAC algorithm are features of left and right images together with their matches.  

a) Compute Fundamental matrix from random sample of 8 correspondences.  

b) Find inliers which satisfy F. Inliers are determined based on computed distance between point 

xi and epipolar line. This distance is compared with threshold.  

Solution is F with largest number of inliers. Afte that refine F by non-linear Least squares.  

 

Reconstruction R and T from Fundamental matrix 

First it is necessary to extract Essential matrix from Fundamental matrix. If camera calibration matrix is 

unknown it can be estimate from image metadata. Then Essential matrix is achieved from relation of 

Fundamental and Essential matrix. SVD of E is: 

𝐸 = 𝑈 [
1 0 0
0 1 0
0 0 0

]𝑉𝑇 



Where 𝑈 = [𝑢1 𝑢2 𝑢3] and vector 𝑢3 is nullspace of E. Thus 𝑇 = 𝑢3 or −𝑢3. First camera projection 

matrix is chosen as 𝑃 = [𝐼 0] and second camera projection matrix has 4 possible solutions, as shown 

in the figure 8.  

𝑃′ = [𝑈 ∙ 𝑊 ∙ 𝑉𝑇  +𝑢3] | [𝑈 ∙ 𝑊 ∙ 𝑉𝑇  − 𝑢3] | [𝑈 ∙ 𝑊𝑇∙𝑉𝑇  + 𝑢3] |  

[𝑈 ∙ 𝑊𝑇 ∙ 𝑉𝑇  − 𝑢3]  

𝑊 = [
0 1 0

−1 0 0
0 0 1

] 

If det(R) = -1, then T = -T and R = -R. 

 

Figure 8: 4 solutions for reconstruction from E [7]. 

 

Right solution for P’ can be achieved by point triangulation. 3D point must lie in front of image planes.  

[
𝑥1

1
] = 𝑃 [

𝑋1

1
] , [

𝑥2

1
] = 𝑃′ [

𝑋1

1
] 

Cross product of parallel vectors is equal to 0. Apply this rule to equation above we achieve system: 

[
 
 
 
 
 [

𝑥1

1
]
𝑥
𝑃

[
𝑥2

1
]
𝑥
𝑃′

⋮

[
𝑥𝑛

1
]
𝑥
𝑃𝑛]

 
 
 
 
 

∙ [
𝑋1

1
] = 0 

It is necessary to use Least squares if rank(F) is greater than 2. 

 



3. Bundle adjustment 
Bundle adjustment is computational method for simultaneous refining 3D points in the scene, exterior 

orientation parameters (camera orientation parameters) and interior orientation parameters (camera 

calibration parameters). This process is computationally challenging. Bundle adjustment minimize 

distance between image point coordinates and reprojection of 3D point into the image plane. Below is 

basic equation written in Euclidean form: 

𝑥 + 𝑣 =
𝑃1:2(𝑥, 𝑅, 𝑇, 𝑐) ∙ 𝑋

𝑃3(𝑥, 𝑅, 𝑇, 𝑐) ∙ 𝑋
 

Where x are image coordinates of point, v is correction, P is projection matrix, R is rotation matrix, T is 

translation vector, c are distortion parameters and X are 3D point coordinates.  

System to solve is:  

∆𝑙 + 𝑣 = 𝐴 ∙ ∆𝑥 

Where ∆𝑙 are observations (2D points) and ∆𝑥 are unknowns.  

Normal solution is shown below but it would be very tricky to solve this system. 

∆𝑥 = (𝐴𝑇 ∙ Σ−1 ∙ 𝐴)−1 ∙ 𝐴𝑇 ∙ Σ−1∆𝑙 

Where Σ is block diagonal covariance matrix. 

Since A matrix is sparse matrix, it is possible to decompose A matrix and vector of unknowns: 

∆𝑙 + 𝑣 = [𝐶 𝐵] [
∆𝑘
∆𝑡

] 

Where ∆𝑘 are unknown 3D points and ∆𝑡 are orientation parameters.  

Normal matrix is then divided into 4 submatrices. 

𝑁 = 𝐴𝑇 ∙ Σ−1 ∙ 𝐴 = [𝐶
𝑇

𝐵𝑇] ∙ Σ−1 ∙ [𝐶 𝐵] = [𝐶
𝑇 ∙ Σ−1 ∙ 𝐶 𝐶𝑇 ∙ Σ−1 ∙ 𝐵

𝐵𝑇∙Σ−1 ∙ 𝐶 𝐵𝑇 ∙ Σ−1 ∙ 𝐵
]

= [
𝑁𝑘𝑘 𝑁𝑘𝑡

𝑁𝑡𝑘 𝑁𝑡𝑡
] 

Where 𝑁𝑘𝑘 is almost diagonal matrix containing 3x3 blocks for each point, 𝑁𝑡𝑡 is almost diagonal matrix 

consist of 6x6 blocks for camera orientation, 𝑁𝑘𝑡 and 𝑁𝑡𝑘 = 𝑁𝑘𝑡
𝑇  links camera orientations with point 

observations via 3x6 blocks and  

𝑁𝑘𝑘 = 𝑑𝑖𝑎𝑔(𝑁𝑘𝑖𝑘𝑖), 𝑁𝑘𝑖𝑘𝑖 = ∑ 𝐶𝑖𝑗 ∙ Σ𝑖𝑗
−1 ∙ 𝐶𝑖𝑗

𝑇

𝑗𝜖𝐵𝑖

 

𝑁𝑘𝑘 consist of submatrices 𝑁𝑘𝑖𝑘𝑖 which summarizes all images where a 3D point is visible.  

𝑁𝑡𝑡 = 𝑑𝑖𝑎𝑔(𝑁𝑡𝑗𝑡𝑗), 𝑁𝑡𝑗𝑡𝑗 = ∑ 𝐵𝑖𝑗 ∙ Σ𝑖𝑗
−1 ∙ 𝐵𝑖𝑗

𝑇

𝑖𝜖𝑃𝑗

 

𝑁𝑡𝑡 consist of submatrices 𝑁𝑡𝑗𝑡𝑗 which summarizes all visible points in the image.  

𝑁𝑘𝑖𝑡𝑗 = 𝐶𝑖𝑗 ∙ Σ𝑖𝑗
−1 ∙ 𝐵𝑖𝑗

𝑇
 



 

If system is rewritten by normal equations, we achieve: 

[
𝑁𝑘𝑘 𝑁𝑘𝑡

𝑁𝑡𝑘 𝑁𝑡𝑡
] [

∆𝑘
∆𝑡

] = [
ℎ𝑘

ℎ𝑡
] , [

ℎ𝑘

ℎ𝑡
] = 𝐴𝑇 ∙ Σ−1 ∙ ∆𝑙 

Now can be system solved by adding matrix.  

[
𝑁𝑘𝑘

−1 0

−𝑁𝑡𝑘 ∙ 𝑁𝑘𝑘
−1 𝐼

] [
𝑁𝑘𝑘 𝑁𝑘𝑡

𝑁𝑡𝑘 𝑁𝑡𝑡
] [

∆𝑘
∆𝑡

] = [
𝑁𝑘𝑘

−1 0

−𝑁𝑡𝑘 ∙ 𝑁𝑘𝑘
−1 𝐼

] [
ℎ𝑘

ℎ𝑡
] 

[
𝐼 𝑁𝑘𝑘

−1 ∙ 𝑁𝑘𝑡

0 𝑁𝑡𝑡−𝑁𝑡𝑘 ∙ 𝑁𝑘𝑘
−1 ∙ 𝑁𝑘𝑡

] [
∆𝑘
∆𝑡

] = [
𝑁𝑘𝑘

−1 ∙ ℎ𝑘

ℎ𝑡−𝑁𝑡𝑘 ∙ 𝑁𝑘𝑘
−1 ∙ ℎ𝑘

] 

Reduced normal system from the 2nd row is: 

𝑁̅𝑡𝑡 ∙ Δ𝑡 = ℎ̅𝑡 , 𝑁̅𝑡𝑡 = 𝑁𝑡𝑡−𝑁𝑡𝑘 ∙ 𝑁𝑘𝑘
−1 ∙ 𝑁𝑘𝑡 , ℎ̅𝑡 = ℎ𝑡−𝑁𝑡𝑘 ∙ 𝑁𝑘𝑘

−1 ∙ ℎ𝑘  

𝑁𝑘𝑘
−1 is easy to invert since it is possible to invert just each block of sparse diagonal matrix or use sparse 

solver. When Δ𝑡 is determined it is easy to determine ∆𝑘 from 1st row of reduced normal system: 

∆𝑘 = 𝑁𝑘𝑘
−1 ∙ (ℎ𝑘−𝑁𝑘𝑡 ∙ Δ𝑡) 

 

 

Multi-View Stereo 
Multi-View Stereo algorithms are designed to reconstruct detailed 3D models from obtained images. 

MVS is solved as image\geometry consistency optimization problem. MVS focus on robust 

implementations of photometric consistency measures, and efficient optimization algorithms. MVS main 

algorithms to 3D reconstruction are Depth map reconstruction and Point-cloud reconstruction, another 

algorithms for data fusion and refinement are Volumetric data fusion and MVS mesh refinement [9]. 

 

Photo-consistency measures 

For a given set of images and a 3D point (p) seen by all the images is photo-consistency of p seen by 

images Ii and Ij written as: 

𝐶𝑖𝑗(𝑝) = 𝜌(𝐼𝑖(Ω(𝜋𝑖(𝑝))), 𝐼𝑗(Ω(𝜋𝑗(𝑝)))) 

Where 𝐶𝑖𝑗(𝑝) is photo-consistency, 𝜌(𝑓, 𝑔) is similarity of vectors f and g, 𝜋𝑖(𝑝) is projection p on image 

i, Ω(𝑥) is support domain (kernel) around point x and 𝐼𝑖(𝑥) are sampled image intensities within the 

domain (kernel window).   

Example of rectangular 3x3 photo-consistency domain Ω which is centered around pixel point e is shown 

in the figure 9. Photo-consistency is comparing 1D vectors containing image intensity in the domain. 

Image intensities in the domain are ordered into 1D vector 𝑓 = (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖). 



 

Figure 9: Photo-consistency domain around point e and transformation into vector [9]. 

For photo-consistency measures it can be used Sum of Squared Differences (SSD), Sum of Absolute 

Differences (SAD), Normalized Cross Correlation (NCC), Census, Rank and Mutual Information (MI). 

 

Normalized cross correlation 

Zero-mean normalized cross correlation (NCC) is one of the most MVS photo-consistency measures. It 

is invariant to changes in grain and bias. It is widely used when illumination and material invariance is 

necessary. NCC usually fails due to lack of texture or repetitive textures. The main reason to use NCC 

is its accuracy. The NCC similarity measure is: 

𝜌𝑁𝐶𝐶(𝑓, 𝑔) =
(𝑓 − 𝑓)̅ ∙ (𝑔 − 𝑔̅)

𝜎𝑓 ∙ 𝜎𝑔
∈ [−1,1] 

Where 𝑓 ̅is the mean of 𝑓 and 𝜎𝑓 is standard deviation of 𝑓. 

For handling color images, it is recommended to compute NCC independently per channel and compute 

average NCC score.  

 

1. Depth map reconstruction 
Depth map scene representation is very popular due to its flexibility and scalability into large models. 

Depth map can be reconstructed even for small number of neighboring images. Depth map can be 

imagined as an 2D array of 3D points. A scene represented by depth maps can be thought as merged 

3D point cloud model. Depth map reconstruction takes a set of images and image parameters adjusted 

by SfM, and compute 3D geometry for reference image.  

 

Winner-Takes-All algorithm 

Is one of a simple depth map reconstruction algorithm. Photo-consistency values are computed along 

epipolar line for each neighboring image. Depth value is computed from the highest photo-consistency 

score which is achieved from a set of photo-consistency functions (neighboring images), see figure 10.  



 

Figure 10:Winner-Takes-All algorithm [9], the highest NCC score of photo-consistency function is used for depth 
reconstruction. 

Robust Photo-Consistency Depth maps 

Occlusions and other effects bring noise to photo-consistency function. For pixel in the reference image 

algorithm computes photo-consistency functions of neighboring images. Local maxima are identified 

from a set of photo-consistency functions. Robust photo-consistency function 𝐶𝑅(𝑑) is given: 

𝐶𝑅(𝑑) = ∑𝐶𝑘 ∙ 𝑊 ∙ (𝑑 − 𝑑𝑘)

𝑘

 

Where 𝑊 is a kernel function (weight).  

Simple average gives incorrect depth, while robust photo-consistency gives right depth, see figure 11.  

 

Figure 11:Robust photo-consistency function [9]. 



 

Depth map reconstruction another approaches 

Thresholding photo-consistency scores can be another approach. Algorithm ignores photo-consistency 

scores below a chosen threshold. Markov Random Field (MRF) Depth maps is a combined solution that 

considers photo-consistency and spatial consistency together. Spatial consistency uses an assumption 

that neighboring pixels have similar depths.  

The main disadvantage of depth maps is how to merge them into 3D scene. The quality of depth map 

is decreasing with depth discontinuities and occlusions. The accuracy of the depth map is inverse to the 

distance to the surface. Optimization of depth maps is very large and computationally expensive.  

2. Point cloud reconstruction 
Point cloud or patched based surface is less computationally expensive for optimization. Point cloud 

reconstruction algorithms are using spatial consistency assumption and expand point cloud on the 

surface during reconstruction process.   

 

Patch based reconstruction 

Patch can be imagined as a tangent plane to reconstructed surface. For patch p algorithm determines 

its position c(p) and normal vector n(p). Photo-consistency function is extended and consist of position 

of patch and surface normal.  

 

Initial step 

First step use detected features and triangulate them (if they are not yet triangulated). For initialization 

c(p) is achieved from triangulation and n(p) is set to image projection center. Detailed description of 

algorithm is in the figure 12, for more details visit [10]. 

 

Figure 12: Initial feature matching algorithm [10]. 

 



Expansion 

Algorithm identifies neighboring cells of patch p which do not contain any patches. For each empty cell 

a new patch p’ is created. Normal of patch p’ is set as equal to patch p. Set of images where the patch 

p’ is visible is set as the same for patch p. Position c(p’) is initialized as point where viewing point 

intersects patch p plane. Optimization can be started. During optimization patch position and normal of 

the patch are adjusted and set of images where new patch is visible is updated. Figure 13 shows patch 

expansion algorithm, more details in [10]. 

 

Figure 13: Patch expansion algorithm [10]. 

 

Filtering 

For filtering a distance along the normal is compared to a chosen threshold (𝛾𝑑).  

|(𝒄(𝒑) − 𝒄(𝒑′)) ∙ 𝑛(𝑝)| + |(𝒄(𝒑) − 𝒄(𝒑′)) ∙ 𝑛(𝑝′)| < 𝛾𝑑 
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